
Queueing Systems with Hard Delay Constraints: A Framework

for Real-Time Communication over Unreliable Wireless

Channels∗†

I-Hong Hou‡ and P. R. Kumar§

May 3, 2011

Abstract

We provide an account of recent work that formulates and addresses problems that arise
when employing wireless networks to serve clients that generate real-time flows. From a queue-
ing systems perspective, these problems can be described as single-server problems where there
are several customer classes. Customer’s balk when their delay exceeds a threshold. There are a
range of issues that are of interest. One of the first such issues is to determine what throughput
rate vectors are feasible, and to determine the server’s schedule. Another is to maximize a utility
function of the departure rates of the customer classes.

Real-time flows have a delay bound for each of their packets. It is particularly challenging
to provide delay guarantees for real-time flows in wireless networks since wireless transmis-
sions are unreliable. We propose a model that jointly considers the delay bounds of packets, the
unreliable wireless channels, and the throughput requirements of clients. We then determine
the necessary and sufficient condition for feasibility of the client requirements. The analysis
and condition are interesting since this problem gives rise to some new features concerning un-
avoidable idle times in a system. We further derive an efficient, nearly linear time algorithm for
admission control, which precisely determines whether it is feasible to fulfill the requirements
of all clients in the system. We also propose two on-line scheduling policies and prove that they
can fulfill the requirements of all clients whenever that is feasible.

We next turn to the scenario where the throughput requirements of clients are elastic, but
with hard delay bounds. We formulate this as a utility maximization problem, where client util-
ities are based on their throughputs. We decompose this problem into two subproblems, and

∗This material is based upon work partially supported by USARO under Contract Nos. W911NF-08-1-0238 and W-911-
NF- 0710287, NSF under Contracts CNS-1035378, CNS-0905397, CNS-1035340, and CCF-0939370, and AFOSR under
Contract FA9550-09-0121. Any opinions, findings, and conclusions or recommendations expressed in this publication
are those of the authors and do not necessarily reflect the views of the above agencies.

†Part of this work has been presented at the 2009 IEEE INFOCOM and 2010 IEEE INFOCOM.
‡CSL and Department of CS, University of Illinois, 201 North Goodwin Avenue, Urbana, IL 61801-2302, USA.

Email: ihou2@illinois.edu.
§CSL and Department of ECE, University of Illinois, 1308 West Main St., Urbana, IL 61801-2307, USA.

Email: prkumar@illinois.edu.

1

show that this decomposition can be naturally implemented as a bidding game among all clients
and the access point, which plays the role of a centralized scheduler. In the bidding game, the
strategy of each client is to carry out a simple selfish optimization. We show that the strategy of
the access point can be implemented by a simple on-line scheduling policy. A surprising result
is that the channel reliabilities need not be known a priori.

Key Words: Delays, Real-Time Networks, Wireless Networks, Admission Control, Scheduling,
Utility Maximization, Network Utility Maximization.

1 Introduction

We begin by describing the context which motivates the formulation of the problem and the

theory that we develop in this paper. There is an increasing demand for using wireless networks

to serve real-time flows which require strict delay bounds on each packet. Applications that

generate such flows include Voice-over-IP (VoIP), video streaming, on-line gaming, networked

control, etc. In these applications, packets are only useful if they are delivered within a hard

delay bound. Otherwise, the packets “expire,” and are not useful. In this paper, we propose to

measure the performance of a flow by its timely-throughput, defined as the throughput of packets

that are delivered before their delay bounds. We assume that each flow has a specified timely-

throughput requirement, and study both the specific problem of how to provide guarantees on

fulfilling the requirements of all flows in the system, as well as a variation where the flows

are elastic and the goal is to maximize a utility function of the timely throughputs. Serving

such real-time flows in wireless networks is particularly challenging. Since wireless signals are

subject to shadowing, fading, and interference, wireless transmissions are usually unreliable.

Therefore, when formulating the problem of serving real-time flows in wireless networks, it is

necessary to explicitly take into account the unreliable nature of wireless transmissions.

In this paper, we propose a framework for studying real-time wireless networking. There

are two particular challenges in advancing such a framework for further study. First, the crite-

ria that are studied should be relevant for real-time services. Second, the model should both

capture the relevant constraints of the wireless medium and should also yield tractable results

that can be implemented. So motivated, we propose a framework that models the application

specifications as jointly including a per-packet delay bound and timely-throughput requirement,

and on the wireless side models the unreliable nature of transmissions. It turns out that this

overall model allows the development of a rich theory with interesting, and often, to us at least,

surprising, results. Within this framework we will study two problems, one concerning feasi-

2

bility of inelastic flows in a simple context [1], and another concerning optimization of elastic

flows [2]. There are several other results concerning these models that we will not address

here. We refer the reader to [3–6] for these results. Reference [3] addresses the problem of

more general arrivals, [4] addresses the problem of more general models for wireless fading

and rate adaptation, [5] incorporates rate adaptation for the optimization of elastic flows and

addresses selfish behaviors of clients, and [6] considers the problem of broadcasting real-time

flows.

We begin by studying the problem of characterizing when it is feasible to fulfill a given set

of timely-throughput requirements of the clients, given the channel unreliabilities. We establish

a necessary and sufficient condition for feasibility [1]. This condition involves exponentially

many tests. We subsequently show that the number of tests can be greatly reduced and develop

a polynomial-time, actually nearly linear time, algorithm for determining feasibility [1]. This

algorithm solves the admission control problem.

We next study the problem of packet scheduling [1]. We propose two simple on-line schedul-

ing policies. We prove that these scheduling policies fulfill the timely-throughput requirements

of all flows in the system, as long as the system as a whole is feasible.

Next, we relax the assumption that flows specify their timely-throughput requirements, and

discuss how to allocate a timely-throughput to each flow [2]. That is, we consider the problem

of elastic flows. The goal is to provide levels of feasible timely-throughputs for the flows that

maximize the total utility of the system. This optimization problem can be decomposed into

two subproblems, as well known from earlier work, see [7–9], and this decomposition can be

naturally interpreted as a bidding game. This bidding game involves each flow selfishly deciding

its own payment, while the centralized scheduler, or the access point, is responsible for choosing

a suitable scheduling policy to achieve weighted proportional fairness among flows. We show

that there exists a simple, and somewhat surprising, on-line scheduling policy that achieves

weighted proportional fairness among flows [2]. This policy does not require anyone, neither

the clients nor the central scheduler, to know the channel reliabilities.

In summary, our contributions include the following. First, we propose a model for a wire-

less system serving multiple real-time flows. We then provide solutions for three important

problems, namely, admission control, packet scheduling, and utility maximization. We also

provide simulations that illustrate the theoretical results.

The rest of the paper is organized as follows: Section 2 summarizes some related work

3

dealing with serving real-time flows in wireless systems. Section 3 formally introduces the

model. We then derive a condition for feasibility in Section 4. In Section 5, the problem of

packet scheduling is addressed. In Section 6, we propose an efficient algorithm for admission

control. In Section 7, we discuss the problem of utility maximization and propose a bidding

game to achieve the maximum utility. The strategy for the AP in the bidding game is further

studied in Section 8, and an on-line scheduling policy for the AP is proposed. The optimality of

this on-line scheduling policy is established in Section 9. Section 10 provides simulation results.

Finally, Section 11 concludes this paper.

2 Related Work

There has been much work on the three important problems in computer networks: admission

control, packet scheduling, and utility maximization. Xiao et al [10] and Pong et al [11] have

proposed admission control algorithms for scenarios where the performance of each client solely

depends on its allocated bandwidth, but do not consider any guarantees on delay bounds. Garg

et al [12], Zhai et al [13], and Shin and Schulzrinne [14] have used various performance statis-

tics to predict feasibility, but do not consider theoretical problems underlying their proposed

methods. Gao, Cai, and Ngan [15], Niyato and Hossain [16], and Ahmed [17] have surveyed

existing work on admission control for various wireless systems.

Tassiulas and Ephremides [18] have proposed a scheduling policy for networks with time-

varying connectivity and proved that the policy is throughput optimal. Neely [19] has further

shown that this policy achieves constant average delay. Johnsson and Cox [20] have proposed

a policy to achieve both small packet delay and high throughput. Dua and Bambos [21] have

studied the tradeoff between user fairness and system performance. These works also do not

provide any theoretical guarantees. Raghunathan et al [22] and Shakkottai and Srikant [23]

have proposed policies that are proved to minimize the total number of expired packets in

the system, but do not provide guarantees on the individual performance of each client in the

system. Fattah and Leung [24] and Cao and Li [25] have surveyed works on scheduling policies

for wireless systems.

Kelly [7] and Kelly, Maulloo, and Tan [8] have considered the problem of utility maximiza-

tion in wireline networks, and have proposed a decomposition technique for this problem. Lin

and Shroff [26] have also studied utility maximization by taking multi-path routing into ac-

4

Figure 1: An example that illustrates the system. The right half of the figure illustrates
the single server, called access point(AP) serving multiple customer streams, called
clients. The service time of a customer from client c is geometrically distributed with
mean 1/pc, which captures an unreliable channel with probability pc of success between
AP and client c. The left half of the figure shows the timeline of each client’s periodic
arrival process, where each arrow indicates the arrival of a packet.

count. Xiao, Shroff, and Chong [27], Cao and Li [28], and Bianchi, Campbell, and Liao [29]

have studied the problem of resource allocation in wireless networks to either achieve maximum

total utility or fairness among all clients in the system, but do not consider delay guarantees.

3 Model

We consider a system with C wireless clients, numbered as 1, 2, . . . , C, and one access point

(AP); see Figure 1. Each client is associated with a real-time flow that generates traffic that

requires delay guarantees. The AP is in charge of scheduling all transmissions in the system.

We assume that time is slotted. The duration of a time slot is set to be able to accommodate

the time needed for a transmission between the AP and a client. Time slots are numbered as

{1, 2, 3, . . . }, and are further grouped into intervals, where an interval consists of T consecutive

time slots in (kT, (k + 1)T], for each k. Each client generates one packet at the beginning of

each interval. We assume that each client has a delay bound of T time slots for each of its

packets. That is, packets that are generated at the beginning of an interval are required to be

delivered before the end of the interval, if they are to be useful. If a packet is not delivered by

the end of the interval that it is generated, the packet expires and is removed from the system.

5

By removing expired packets, the delays of all delivered packets are guaranteed to be at most T

time slots.

We consider unreliable and heterogeneous wireless channels. When the AP schedules a

transmission for a client c, the transmission is successful with probability pc, and the transmis-

sion fails, either due to channel fading or packet collision, with probability 1− pc.

Since wireless transmissions are unreliable, it may not be possible to deliver all packets

before their respective delay bounds. Thus, we measure the performance of a client by its timely-

throughput, which is defined as the long-term average number of packets that are delivered for

the client per interval. To be more specific, let ec(k) be the indicator function that a packet is

delivered for client c in the kth interval. The timely-throughput of client c is then defined as

lim infK→∞
∑K

k=1 ec(k)

K .

Suppose now that each client c has a minimum timely-throughput requirement, qc. A

scheduling policy is one that decides which client to transmit in each time slot, based on the

history of all the information concerning the system up to that time slot.

Definition 1. A system is fulfilled by a scheduling policy η if, under η, the timely-throughput of

each client is at least as large as its requirement, i.e., lim infK→∞
∑K

k=1 ec(k)

K ≥ qc, with probability

one.

This paper studies the problem of determining whether it is feasible to fulfill a system, and

how to actually fulfill a feasible system.

Definition 2. The system is said to be feasible if there exists some scheduling policy η that fulfills

it.

Definition 3. A scheduling policy η is feasibility optimal if it fulfills every feasible system.

From a queueing system perspective, this system can be regarded as a discrete-time sys-

tem with C customer classes and one server. Customers of each class arrive periodically with

period T , and in a synchronized way. That is, one customer arrives for each class at times

t = 0, T, 2T, 3T, The service time of customers of class c is geometrically distributed with

mean 1/pc. The server can serve at most one customer at each time t. Customers balk when

their waiting time in the system exceeds T . The service can be preemptive. The server can

make its decision on which customer to serve in a slot t based on the entire history of the sys-

tem up to time t. The timely throughput of class c is the rate at which customers of class c

leave after completing service. Each class c requires a minimum timely-throughput qc. Given

6

{(pc, qc, T) : 1 ≤ c ≤ C}, we would like to determine whether it is feasible, and, if so, we would

like to determine a scheduling policy that provides at least the desired minimum timely through-

put to each client. Looking ahead, in Section 7, we will subsequently also consider the problem

of utility maximization, where each client has a utility function Uc(qc) that is strictly increasing

and strictly concave. Then the goal will be to maximize the total system utility
∑C

c=1 Uc(qc),

over the set of feasible vectors (q1, q2, . . . , qC) of timely-throughputs.

4 A Necessary Condition for Feasibility

We now analyze the problem of determining whether a system is feasible. We will establish a

necessary condition for feasibility, which will be constructively shown to be also sufficient for

feasibility in Section 5.

The timely-throughput of a client depends only on the proportion of time slots that that

client is transmitted. This is formally captured by the following lemma.

Lemma 1. There exists a policy that yields for each client c a timely throughput of at least qc with

probability one if and only if the long-term average number of time slots per interval that the AP

spends transmitting packets for client c under η is at least qc

pc
with probability one.

Proof. Define:

uc(t) =

1, if client c transmits at time t,

0, otherwise,

and

dc(t) =

1, if a packet delivered for client c at time t,

0, otherwise.

Let Ft be the σ-algebra generated by all events in the system prior to time t. Then E[dc(t)|Ft−1, uc(t)] =

pcuc(t). Hence, by the martingale stability theorem of Loeve [30],

lim
T→∞

1
T

T∑
t=1

[dc(t)− pcuc(t)] = 0, a.s. (1)

Therefore, we have,

lim inf
T→∞

1
T

T∑
t=1

dc(t) ≥ qc

T
, a.s. ⇔ lim inf

T→∞
1
T

T∑
t=1

uc(t) ≥ qc

pcT
, a.s.

7

We hereafter denote wc := qc

pc
as the work load of client c. Evaluating whether a system is

fulfilled by a policy η is then equivalent to evaluating whether the average number of time slots

per interval that the AP schedules transmissions for each client c is at least wc. Since the AP

can schedule at most T transmissions in an interval, we can immediately obtain the following

necessary condition for feasibility.

Lemma 2. A system is feasible only if
∑N

c=1 wc ≤ T .

However, and this is where the problem begins to become interesting, the above condition

is not sufficient. To understand this, consider the example illustrated in Figure 2. There are two

clients, so C = 2, and the period is T = 3. Suppose that in the first slot in an interval, client 1

transmits. Suppose that the transmission is indeed successful, which occurs with probability p1.

Then since there is only one more packet in the system, namely that of client 2, it transmits in

the second slot. With probability p2, it too is successful. In that case, the last slot in the interval

necessary has to remain idle, since there are no more packets in the system. Thus the expected

number of idle slots in an interval is at least p1p2. Hence the system can be busy on average for

at most 3 − p1p2 slots in each interval. Thus, it is necessary that
∑2

c=1 wc ≤ 3 − p1p2, in order

that (q1, q2) be feasible. Therefore the above condition shown in Lemma 2 is not sufficient.

Thus, the expected number of time slots that will be forced to be idle also needs to be consid-

ered when evaluating feasibility. In general, the expected number of idle time slots depends on

the scheduling policy used; however, we show that it is the same for all work conserving policies.

Definition 4. A scheduling policy is said to be work conserving if it schedules some packet for

transmission that has neither expired nor been delivered, whenever there is some such packet in the

system, and only idles a slot when there are no such packets waiting to be transmitted.

Lemma 3. The expected number of idle time slots in an interval is the same for all work conserving

policies.

Proof. Let γc be a geometrically distributed random variable with mean 1/pc; it is the random

number of transmissions that the AP needs to schedule, in order to deliver a packet for client

c in some interval. Since work conserving policies only idle when all packets generated in an

interval have been delivered, the number of idle time slots in an interval can then be expressed

as max(0, T −∑C
c=1 γc) = (T −∑C

c=1 γc)+, which is the same for all work conserving policies.

8

Figure 2: An illustration of the example in Section 4. We use ‘S’ to denote a successful
transmission, and ‘I’ to denote an idle time slot.

Therefore, the expected number of idle time slots in an interval, E{(T −∑C
c=1 γc)+}, is also the

same under all work conserving policies.

The following lemma allows us to hereafter focus on work conserving policies.

Lemma 4. For any feasible system, there exists a work conserving policy that fulfills it.

Proof. Consider any feasible system. By definition, it can be fulfilled by some scheduling policy

η′. We construct a work conserving policy η from η′, in two steps. First, let η′′ be a policy that

moves all idle slots to the end of the period by taking the same action that η′ would have taken

after a contiguous sequence of idle slots. We can stochastically couple the behavior under η′ and

η′′. Next, we construct the policy η by scheduling transmissions the same way as η′′ except that

η randomly picks a packet that has not been delivered for transmission in each time slot that η′′

chooses to idle, whenever such packet exists. Thus, η is a work conserving policy. Moreover, it

stochastically delivers more packets for each client than η′. Thus, η also fulfills the system.

Let us denote by I{1,2,...,C} the expected number of idle time slots in an interval under a

work conserving policy; noting that it is the same under all work conserving policies.

Clearly, we can strengthen the necessary condition of Lemma 2 as follows.

Lemma 5. A system is feasible only if
∑C

c=1 wc + I{1,2,...,C} ≤ T .

Now we again ask the question. Is this a sufficient condition? Surprisingly, the answer is

again no. To understand this, we again present a counterexample.

9

Example 1. Consider a system with interval length T = 3, and two clients. The reliabilities for

both clients are p1 = p2 = 0.5. Client 1 requires a timely throughput of q1 = 0.876, while the

timely throughput requirement of client 2 is q2 = 0.45.

Now, we have:

w1 = 1.76,

w2 = 0.9,

I{1} = I{2} = 1.25,

I{1,2} = 0.25.

If we evaluate the condition for the subset of S = {1}, we find w1 = 1.76 > 1.75 = T − I{1}.

This indicates that the system is not feasible even if only client 1 were present. (However, if we

evaluate the condition for all clients {1, 2}, we have w1 + w2 = 2.66 < 2.75 = T − I{1,2}.) Thus,

this example suggests that merely evaluating the condition for the set of all clients is not sufficient.

2

From this example, it is clear that we will need to consider all subsets of the set of clients.

Accordingly, let us fix a subset S ⊆ {1, 2, . . . , C}, and consider a hypothetical problem where

only the clients in the subset exist and need to be served. Let us denote by IS the expected

number of idle time slots in an interval under any work conserving scheduling policy when only

these clients in the subset S ⊆ {1, 2, . . . , C} are present in the system. The value of IS can

be formally expressed as E{T −∑
n∈S γc)+}, where γc is the geometric random variable with

mean 1/pc that indicates the number of transmissions that the AP needs to schedule for client

c before successfully delivering its packet. We now obtain an even stronger necessary condition

for feasibility.

Lemma 6. A system is feasible only if
∑

c∈S wc + IS ≤ T , for all S ⊆ {1, 2, . . . , C}.

One can ask the question: Why is this condition not automatically satisfied whenever the

condition of Lemma 5 is satisfied. The answer lies in the observation that while the first term
∑

c∈S wc is monotonically increasing in S, the second term IS is monotonically decreasing in S.

Hence the sum
∑

c∈S wc + IS is not necessarily monotonically increasing in S. Thus it may not

attain its maximum when S is the maximum set {1, 2, . . . , C}. This is why checking only the

condition of Lemma 5 is not sufficient.

10

It turns out that the condition of Lemma 6 is indeed necessary and sufficient, as we prove in

Section 5. Our proof will be constructive, and so we now turn to the issue of scheduling policies.

5 Scheduling Policies

In this section, we describe two scheduling policies and prove that they both fulfill every sys-

tem that satisfies the condition for feasibility in Lemma 6. These two policies are hence both

feasibility optimal.

Both policies are what we call as largest debt first policies. Under a largest debt first policy,

the AP computes the debt that it owes to each client at the beginning of each interval, where

the particular definition of debt is specified by the corresponding policy. The AP then prioritizes

all clients according to their debts. In each time slot in the interval, the AP schedules the

transmission for an undelivered packet from the client which has the largest debt among all

clients whose packets have not yet been delivered in the interval.

We propose two different definitions for debt, and therefore two different scheduling poli-

cies. The first type of debt is called the time-based debt. It is derived from the work loads of

clients. Let fc(k) be the number of time slots in which the AP schedules transmissions for client

c in the kth interval. The time-based debt of client c at the beginning of the (K + 1)th interval

is then defined as Kwc −
∑K

k=1 fc(k). The rationale is the following. From Lemma 1 we know

that client c needs on average Kwc slots in K intervals, in order to fulfill the needs of client c.

Thus Kwc is the number of slots that the AP owes client c. However, if it has actually spent less

time catering to client c, then the balance between what it owes and what is has spent on client

c is the time-based debt that it owe to client c.

The other type of debt is called the weighted-delivery debt. Let ec(k) be the indicator function

that the AP actually delivers a packet for client c in the kth interval. The weighted-delivery debt

of client c at the beginning of the (K +1)th interval is defined as (Kqc−
∑K

k=1 ec(k))/pc. Again,

the first term Kqc represents the number of packets that should have been delivered to client c in

the first K intervals, on average, and thus represents what is owed to client c. The second term,
∑K

k=1 ec(k), is the actual number of packets delivered, and so the balance is the delivery debt it

owe to client c. The normalization by dividing by pc is therefore called the weighted-delivered

debt. It may be noted that the weight 1/pc represents the number of slots that is needed to

deliver a packet on average. Hence, this normalization is actually converting packets into an

11

equivalent number of time slots.

The resulting largest debt first policies are called the largest time-based debt first policy and

the largest weighted-delivery debt first policy, respectively.

5.1 Proof of Feasibility Optimality of the Two Largest Debt First Policies

We will prove that both largest debt first policies are feasibility optimal. The proofs are based

on the Blackwell’s approachability theorem [31]. We first introduce this theorem.

Consider a single-player repeated game. In each round i of the game, the player chooses

an action, a(i) ∈ A, based on events happening prior to this round. The player then receives

a C-dimensional vector of reward, denoted by v(i) ∈ RN , at random. The distribution of v(i)

only depends on the action taken by the player, a(i). Blackwell studied the long-term average

payoff vector, limj→∞
∑j

i=1 v(i)

j , and introduced the concept of approachability. (This is done by

Blackwell in a more general zero-sum game context than what we need here).

Definition 5. Let B ⊆ RC be a measurable set in C-dimensional space. B is said to be approach-

able under a policy η if, under η, the distance between B and
∑j

i=1 v(i)

j , which is the average payoff

up to round j, converges to 0 almost surely as j goes to infinity.

Blackwell then provided a sufficient condition for approachability.

Theorem 1 ([31]). Let B ⊆ RC be a closed set in C-dimensional space. For each point x /∈ B,

denote y(x) as the closest point in B to x, and h(x) as the hyperplane perpendicular to the line

segment xy(x) that passes through y(x). Consider a policy η that has the following property:

Whenever
∑j

i=1 v(i)

j is not in B, η chooses an action a for round j + 1 whose expected payoff,

E{v(j + 1)|a(j + 1) = a}, is separated from
∑j

i=1 v(i)

j by the hyperplane h(
∑j

i=1 v(i)

j). Then B is

approachable under the policy η.

We now prove that the two largest debt first policies are feasibility optimal. In the following

proof, and throughout the rest of the paper, we use [vc] to denote the vector consisting of

[v1, v2, . . . , vC].

Theorem 2. The largest time-based debt first policy is feasibility optimal.

Proof. We prove that the largest time-based debt first policy fulfills every system that satisfies

the necessary condition for feasibility in Lemma 6.

12

Let fc(k) be the number of time slots in which the AP schedules transmissions for client c in

the kth interval. The time-based debt of client c at the beginning of the (k + 1)th interval is then

dc(k) := kwc−
∑k

j=1 fc(j). Lemma 1 has shown that a system is fulfilled if lim supk→∞
dc(k)

k ≤ 0.

We now show that, under the largest time-based debt first policy, the vector [dc(k)
k] does indeed

approach the set B = {v = [vc] ∈ RC |vc ≤ 0, ∀c}.
We apply Theorem 1, where the AP acts as the player in the repeated game, whose actions

are scheduling decisions. The payoff of the AP in the kth interval is the vector [wc − fc(k)].

Assume that, at the beginning of the (k + 1)th interval, the vector [dc(k)] is not in B. Without

loss of generality, assume that d1(k) ≥ d2(k) ≥ · · · ≥ dm(k) > 0 ≥ dm+1(k) ≥ The closest

point in B to [dc(k)] is [0, 0, . . . , 0, dm+1(k), dm+2(k), . . .]. The hyperplane h([dc(k)]) is then

{x ∈ RC |g(x) :=
∑m

c=1 dc(k)x = 0}.
For each l, the largest time-based debt first policy gives higher priority to clients 1 through l

than the rest of clients in the (k+1)th interval. Thus, we have
∑l

c=1 E{fc(k+1)} = T −I{1,...,l},

where I{1,...,l} is the expected number of idle time slots in an interval when the AP only schedules

transmissions for clients 1 through l. We also have E{fl(k + 1)} = I{1,...,l−1} − I{1,...,l}, where

Iφ = T . The expected payoff in the (k + 1)th round is then [wc − (I{1,...,c−1} − I{1,...,c})]. Thus,

g([wc − (I{1,...,c−1} − I{1,...,c})]) =
m∑

c=1

dc(k)(wc − (I{1,...,c−1} − I{1,...,c}))

=
m−1∑
c=1

[dc(k)− dc+1(k)](
c∑

l=1

wl + I{1,...,c} − T)

+ dm(k)(
m∑

l=1

wl + I{1,...,m} − T)

≤ 0.

Lemma 6 has shown that every feasible system has
∑c

l=1 wl + I{1,...,c} − T ≤ 0, for all c. Thus,

the last inequality holds since d1(k) ≥ d2(k) · · · ≥ dm(k) > 0. On the other hand, g([dc(k)]) =
∑m

c=1 dc(k)2 > 0. Thus, h([dc(k)] separates [dc(k)] and [wc−(I{1,...,c−1}−I{1,...,c})]. By Theorem

1, [dc(k)
k] approaches the set B under the largest time-based debt policy.

Theorem 3. The largest weighted-delivery debt first policy is feasibility optimal.

Proof. We prove that the largest weighted-delivery debt first policy fulfills every system that

satisfies the necessary condition for feasibility in Lemma 6.

13

Let ec(k) be the indicator function that the AP delivers a packet for client c in the kth interval.

The weighted-delivery debt of client c at the beginning of the (k + 1)th interval is defined as

dc(k) := (kqc−
∑k

j=1 ec(j))/pc. Obviously, a system is fulfilled if the C-dimensional vector [dc(k)
k]

approaches B = {v = [vc] ∈ RC |vc ≤ 0, ∀c}.
Similar to the proof of Theorem 2, we again apply Theorem 1. The AP acts as the player,

whose action is the scheduling decision, and the payoff is the vector [(qc − ec(k))/pc] in each

interval k. Suppose that the vector [dc(k)] is not in B at the beginning of the (k + 1)th interval.

Without loss of generality, assume that d1(k) ≥ d2(k) ≥ · · · ≥ dm(k) > 0 ≥ dm+1(k) ≥ The

closest point in B to [dc(k)] is [0, 0, . . . , 0, dm+1(k), dm+2(k), . . .]. The hyperplane h([dc(k)]) is

then {x ∈ RC |g(x) :=
∑m

c=1 dc(k)x = 0}.
The largest weighted-delivery debt first policy prioritizes according to the order 1, 2, . . . in

the (k+1)th interval. As shown in the proof of Theorem 2, the expected amount of time that the

AP spends transmitting the packet for client c in the (k+1)th interval is (I1,2,...,c−1−I1,2,...,c). By

Lemma 1, E{ec(k)} = pc(I1,2,...,c−1 − I1,2,...,c), and the expected payoff in the (k + 1)th interval

is [(qc − pc(I1,2,...,c−1 − I1,2,...,c))/pc] = [wc − (I1,2,...,c−1 − I1,2,...,c)]. As shown in the proof of

Theorem 2, g([wc−(I1,2,...,c−1−I1,2,...,c)]) ≤ 0. On the other hand, g([dc(k)]) =
∑m

c=1 dc(k)2 > 0.

Thus, h([dc(k)]) separates [dc(k)] and [(qc − pc(I1,2,...,c−1 − I1,2,...,c))/pc]. By Theorem 1, [dc(k)
k]

approaches B as k →∞.

Finally, we note that in the proofs of Theorem 2 and Theorem 3, both largest debt first poli-

cies fulfill every system that satisfies the necessary condition in Lemma 6. Thus, this condition

is also sufficient.

Theorem 4. A system is feasible if and only if
∑

c∈S wc + IS ≤ T , for all S ⊆ {1, 2, . . . , C}.

6 An Efficient Algorithm for Admission Control

Theorem 4 has established a necessary and sufficient condition for a system to be feasible.

Thus, to execute admission control, one only needs to evaluate if this necessary and sufficient

condition is satisfied. However, this condition consists of checking the inequality
∑

c∈S wc+IS ≤
T for every subset S ⊆ {1, 2, . . . , C} of clients, making it a computationally complex test, since

there are 2C such subsets to check. In this section, we show that the condition can be greatly

simplified. We derive a polynomial-time algorithm, actually a nearly linear time algorithm, for

14

admission control. The algorithm is based on the following theorem.

Theorem 5. Order the clients so that q1 ≥ q2 ≥ · · · ≥ qC . Let Sk be the subset {1, 2, . . . , k}. The

system is then feasible if and only if
∑

c∈Sk
wc + ISk

≤ T , for all 1 ≤ k ≤ C.

Proof. It is obvious that the above condition is necessary for feasibility. We only need to show

that it is also sufficient.

Consider any infeasible system. Define a minimal infeasible set of this system as a subset S

for which
∑

c∈S wc + IS > T , but for each S′ (S,
∑

c∈S′ wc + IS′ ≤ T . For every infeasible

system, there must exist at least one minimal infeasible set S. Fix S, and let m be the largest

element in S; that is, m = min{k|S ⊆ Sk}. We prove that
∑

c∈Sm
wc + ISm

> T .

If S = Sm, then we are done. Otherwise, let l be the largest element in Sm\S. We want to

show that
∑

c∈S∪{l} wc + IS∪{l} ≥
∑

c∈S wc + IS .

Consider a scheduling policy η that only transmits packets for clients in S\{m} and fulfills

them. Such policy exists because S is a minimal infeasible set, whence the subset S\{m} is

feasible. We expand η by making it schedule transmissions for client m in an interval only after

all packets for clients in S\{m} are delivered, and schedule transmissions for client l only after

the packet for client m is delivered. Under this policy, the expected amount of time that the

AP spends transmitting the packet for client l in an interval is IS − IS∪{l}, and so the timely-

throughput of client l is pl(IS − IS∪{l}) by Lemma 1. Also, the timely-throughput of client m

is strictly less than qm, since the set S is infeasible, and all clients in S\{m} are fulfilled under

this policy. Further, the timely-throughput of client l is no larger than that of client m, as it is

scheduled only after the packet for client m is delivered. Thus, pl(IS − IS∪{l}) < qm. We now

have

(
∑

c∈S∪{l}
wc + IS∪{l})− (

∑

c∈S

wc + IS) =
ql

pl
− (IS − IS∪{l})

=[ql − pl(IS − IS∪{l})]/pl

>(ql − qm)/pl ≥ 0,

where the last inequality holds because ql ≥ qm. Hence,
∑

n∈S∪{l} wn + IS∪{l} >
∑

n∈S wn +

IS > T .

If S ∪ {l} = Sm, then we are done. Otherwise, we select l′ to be the largest element in

Sm\(S ∪ {l}). We expand η by making it schedule transmissions for client m in an interval

15

only after all packets for clients in S\{m} are delivered, and schedule transmissions for client

l (or client l′) only after the packet for client m (or the packet for client l, respectively) is

delivered. Under this policy, the expected number of time slots that the AP spends on client l′

is IS∪{l} − IS∪{l,l′}, and thus the timely-throughput of client l′ is pl′(IS∪{l} − IS∪{l,l′}). Further,

the timely-throughput of client l′ is no larger than that of client l, which in turn is strictly less

than qm. We now have

(
∑

c∈S∪{l,l′}
wc + IS∪{l,l′})− (

∑

c∈S∪{l}
wc + IS∪{l}) =

ql′

pl′
− (IS∪{l} − IS∪{l,l′})

=[ql′ − pl′(IS∪{l} − IS∪{l,l′})]/pl′

>(ql′ − qm)/pl′ ≥ 0,

Hence,
∑

c∈S∪{l,l′} wc + IS∪{l,l′} >
∑

c∈S wc + IS > T .

If S ∪ {l, l′} = Sm, then we are done. Otherwise, we select l′′ to be the largest element in

Sm\(S ∪ {l, l′}) and repeat the above procedure. By induction, we establish that
∑

c∈Sm
wc +

ISm > T .

Thus, we only need to evaluate a total of C inequalities in order to decide whether a system

is feasible. Each test, in turn, involves computing ISk
. We now show that there is an efficient

algorithm that computes ISk
incrementally. We note that Sk+1 = Sk ∪ {k + 1}. Let πSk

(t) be

the probability that
∑

c∈Sk
γc = t, where γc is the geometrically distributed random variable

with mean 1/pc that represents the number of transmissions that the AP need to schedule for

client c in order to deliver the packet of client c. Then, ISk
=

∑T
t=1(T − t)πSk

(t)). Further,

πSk+1(t) =
∑t−1

τ=1 πSk
(τ)Prob{γk+1 = t − τ} =

∑t−1
τ=1 πSk

(t)pk+1(1 − pk+1)t−τ−1. Thus, the

vector [πSk+1(t)|1 ≤ t ≤ T] is the convolution of the vectors [πSk
(t)] and [pk+1(1 − pk+1)t−1],

which can be computed in O(T 2) time by brute force, or in O(T log T) by using the Fast Fourier

Transform Algorithm [32].

A complete algorithm is shown in Algorithm 1. The complexity of Algorithm 1 is O(N log N+

NT log T) or O(N log N + NT 2), depending on the implementation of convolution.

16

Algorithm 1 IsFeasible
1: Sort all clients so that q1 ≥ q2 ≥ · · · ≥ qC

2: totalW ← q1

p1

3: [πS1(t)] ← [p1(1− p1)t−1]
4: totalI ← ∑T−1

t=1 (T − t)πS1(t)
5: if totalW + totalI > T then
6: return Infeasible
7: end if
8: for c = 2 to C do
9: totalW ← totalW + qc

pc

10: [πSc(t)] ← [πSc−1(t)] ∗ [pc(1− pc)t−1]
11: totalI ← ∑T−1

t=1 (T − t)πSc(t)
12: if totalW + totalI > T then
13: return Infeasible
14: end if
15: end for
16: return Feasible

7 Utility Maximization for Elastic Traffic

In the previous sections, we have assumed that the timely-throughputs of clients, [qc], are given

and fixed. In applications with elastic traffic, clients do not have rigid timely-throughput re-

quirements. Rather, each client obtains a certain utility based on the timely-throughput that

it receives, which reflects the performance of its application when it receives that amount of

timely-throughput. In this section and the following one, we address the problem of providing

a timely-throughput to each client, so that the sum of the utilities of the clients is maximized.

We therefore treat the problem of optimizing real-time traffic with hard deadlines for several

clients sharing an AP, under a utility maximization framework.

We assume that each client c has an utility function Uc(·). When the timely-throughput re-

ceived by client c is qc, client c obtains an utility of Uc(qc). We assume that Uc(qc) is strictly

increasing, strictly concave, and continuously differentiable over the range 0 < qc ≤ 1, with the

value at 0 defined as the right limit, possibly −∞. Our goal is to find [qc] to maximize the total

utility in the system,
∑C

c=1 Uc(qc), within the set of vectors [qc] that are feasible. This problem

can be formulated as the following optimization problem.

17

SYSTEM:

Max
C∑

c=1

Uc(qc) (2)

s.t.
∑

c∈S

qc

pc
≤ T − IS ,∀S ⊆ {1, 2, . . . , C}, (3)

and qc ≥ 0, ∀1 ≤ c ≤ C. (4)

It may be difficult to solve SYSTEM directly due to two major problems, one informational

and one computational. First, the objective function (2) involves the individual utility function

of each client, which may be different from client to client and may not be known to the AP. Sec-

ond, there are a total of 2C feasibility constraints in (3), which makes it computationally com-

plex. So, instead of solving SYSTEM directly, we adopt a decomposition technique of Kelly [7] ,

Kelly, Maulloo, Tan [8], and Eisenberg and Gale [9]. Using this approach, we decompose SYS-

TEM into two subproblems, namely, a CLIENTc subproblem and an ACCESS-POINT subproblem.

The CLIENTc subproblem involves only the utility function of client c, while the ACCESS-POINT

subproblem considers the system-wide feasibility constraints which couple the clients. We will

later show that this decomposition can be interpreted as a bidding game where the behavior

of each client is consistent with its own interest. We will show that, surprisingly, there exists

a simple on-line scheduling policy that solves the ACCESS-POINT subproblem. Moreover, and

again surprisingly, this policy does not need explicit knowledge of client channel reliabilities by

anybody.

We first describe the Client-AP decomposition. Given a parameter ψc > 0, representing the

“price” per unit of timely-throughput for client c, the CLIENTc subproblem is as follows:

CLIENTc: (Given the price ψc > 0)

Max Uc(
ρc

ψc
)− ρc (5)

over 0 ≤ ρc ≤ ψc. (6)

On the other hand, given a non-negative vector [ρc], representing the “payments” made by the

clients, the ACCESS-POINT’s subproblem is as follows:

18

ACCESS-POINT: (Given non-negative payments [ρc])

Max
C∑

c=1

ρc log qc (7)

s.t.
∑

c∈S

qc

pc
≤ T − IS ,∀S ⊆ {1, 2, . . . , C}, (8)

over qc ≥ 0, ∀1 ≤ c ≤ C. (9)

We now prove that the solution of the SYSTEM problem follows immediately by jointly solv-

ing the CLIENTc subproblem and the ACCESS-POINT subproblem. This result is not new; it can

be found in [7,8].

Theorem 6. There exist non-negative vectors [qc], [ρc], and [ψc], with ρc = ψcqc, with the following

properties.

(i) For c such that ψc > 0, ρc is a solution to CLIENTc;

(ii) Given that each client c pays ρc per period, [qc] is a solution to ACCESS-POINT.

Further, if [qc], [ρc], and [ψc] are all positive vectors, the vector [qc] is also a solution to SYSTEM.

Proof. This proof resembles the one used in [7]. We will first show the existence of [qc], [ρc],

and [ψc] that satisfy (i) and (ii). We will then show that the resulting [qc] is also the solution to

SYSTEM.

There exists some ε > 0 so that by letting qc ≡ ε, the vector [qc] is an interior point of the

feasible region for both SYSTEM (3) (4), and ACCESS-POINT (8) (9). Also, by setting ρc ≡ ε, ρc

is also an interior point of the feasible region for CLIENTn (6). Therefore, by Slater’s condition, a

feasible point for SYSTEM, CLIENTc, or ACCESS-POINT, is the optimal solution for the respective

problem if and only if it satisfies the corresponding Karush-Kuhn-Tucker (KKT) condition for the

problem. Further, since the feasible region for each of the problems is compact, and the utilities

are continuous on it, or since the utility converges to −∞ at qc = 0, there exists an optimal

solution to each of them.

19

The Lagrangian of SYSTEM is:

LSY S(q, [λS : S ⊆ {1, 2, . . . , C}], [νc]) :=−
C∑

c=1

Uc(qc) +
∑

S⊆{1,2,...,C}
λS [

∑

c∈S

qc

pc
− (T − IS)]

−
C∑

c=1

νcqc,

where the vectors [λS : S ⊆ {1, 2, . . . , C}] and [νc] are the Lagrange multipliers. By the KKT

condition, a vector [q∗c] is the optimal solution to SYSTEM if [q∗c] is feasible and there exists

vectors [λ∗S] and [ν∗c] such that:

∂LSY S

∂qc

∣∣∣∣
[q∗c],[λ∗S],[ν∗S]

= −U ′
c(q

∗
c) +

∑
S3c λ∗S
pc

− ν∗c

= 0, ∀1 ≤ c ≤ C,

(10)

λ∗S [
∑

c∈S

q∗c
pc
− (T − IS)] = 0,∀S ⊆ {1, 2, . . . , C}, (11)

ν∗c q∗c = 0,∀1 ≤ c ≤ C, (12)

λ∗S ≥ 0, ∀S ⊆ {1, . . . , C}, and ν∗c ≥ 0,∀1 ≤ c ≤ C. (13)

The Lagrangian of CLIENTc is:

LCLI(ρc, ξc) := −Uc(
ρc

ψc
) + ρc − ξcρc,

where ξc is the Lagrange multiplier for CLIENTc. By the KKT condition, ρ∗c is the optimal solution

to CLIENTc if ρ∗c ≥ 0 and there exists ξ∗c such that:

dLCLI

dρc

∣∣∣∣
ρ∗c ,ξ∗c

= − 1
ψc

U ′
c(

ρ∗c
ψc

) + 1− ξ∗c = 0, (14)

ξ∗c ρ∗c = 0, (15)

ξ∗c ≥ 0. (16)

Finally, the Lagrangian of ACCESS-POINT is:

LAP ([qc], [ζS], [µc]) := −
C∑

c=1

ρc log qc +
∑

S⊆{1,2,...,C}
ζS [

∑

c∈S

qc

pc
− (T − IS)]−

C∑
c=1

µcqc,

20

where [ζS] and [µc] are the Lagrange multipliers. Again, by the KKT condition, a vector q∗ := [q∗c]

is the optimal solution to ACCESS-POINT if [q∗c] is feasible and there exist vectors [ζ∗S] and [µ∗c]

such that:

∂LAP

∂qc

∣∣∣∣
[q∗c],[ζ∗S],[µ∗c]

= − ρc

q∗c
+

∑
S3c ζ∗S
pc

− µ∗c

= 0, ∀1 ≤ c ≤ C,

(17)

ζ∗S [
∑

c∈S

q∗c
pc
− (T − IS)] = 0,∀S ⊆ {1, 2, . . . , C}, (18)

µ∗cq
∗
c = 0,∀1 ≤ c ≤ C, (19)

ζ∗S ≥ 0, ∀S ⊆ {1, . . . , C}, and µ∗c ≥ 0, ∀1 ≤ c ≤ C. (20)

Assume that [qc], [ρc], and [ψc] satisfy (i) and (ii). We wish to show that [qc] is a solution to

SY STEM . Let ξc be the Lagrange multiplier for CLIENTc. Since we assume ψc > 0 for all

c, the problem CLIENTc is well-defined for all c, and so is ξc. Also, let [ζS] and [µc] be the

Lagrange multipliers for ACCESS-POINT . Since qc > 0, µc = 0 by (19). Further, by (17),

ψc = ρc

qc
=

∑
S3c ζS

pc
.

Let λS = ζS for all S, and νc = ψcξc for all c. Since [qc] is a solution to ACCESS-POINT ,

it is feasible. We check the KKT condition for SYSTEM (10)–(13) and obtain that

∂LSY S

∂qc

∣∣∣∣
[qc],[λS],[νc]

= −U ′
c(qc) +

∑
S3c λS

pc
− νc

= −U ′
c(

ρc

ψc
) + ψc − ψcξc = 0, ∀c, by (14),

λS [
∑

c∈S
qc

pc
− (T − IS)] = ζS [

∑
c∈S

qc

pc
− (T − IS)]

= 0, ∀S, by (18),

νcqc = ξcρc = 0, ∀c, by (15),

λS = ζS ≥ 0,∀S, by (20),

νc = ψcξc ≥ 0,∀c, by (16).

Therefore, [qc] solves SY STEM .

21

7.1 A Bidding Game

We now show that the decomposition into the CLIENTc subproblem and the ACCESS-POINT

subproblem can be naturally interpreted and implemented as a bidding game.

We interpret ρc as the amount of payment that client c pays to the AP per interval. Since

Theorem 6 requires that ρc = ψcqc, ψc can be interpreted as the required amount of payment

for each unit of timely-throughput, or the price per unit of timely-throughput for client c. Under

this interpretation, the objective of CLIENTc is to maximize Uc(ρc

ψc
)−ρc = Uc(qc)−ρc, which is the

utility that client c obtains minus its amount of payment. Thus, the CLIENTc subproblem seeks

to selfishly maximize the net utility of client c, assuming a linear relation between payment

and timely-throughput. On the other hand, the objective of ACCESS-POINT is to maximize
∑C

c=1 ρc log qc, subject to systemwide feasibility constraints on [qc]. Thus, it seeks to achieve

weighted proportional fairness among all clients in the system, where the weight of a client

equals its payment.

Based on this interpretation, we can design a bidding game that jointly solves the CLIENTc

subproblem and the ACCESS-POINT subproblem. The bidding game is formulated as follows:

1. Each client c arbitrarily chooses its amount of payment, ρc > 0, and submits the payment

to the AP.

2. The AP gathers payments from all clients, and then chooses a scheduling policy, under

which the timely-throughput of clients, [qc], solves the ACCESS-POINT subproblem with

parameter [ρc].

3. Each client c observes its own timely-throughput, qc. It computes the parameter ψc =

ρc/qc. It then updates its amount of payment to be the solution of the CLIENTc subproblem

with parameter ψc, and submits the new payment to the AP.

4. Repeat Step 2.

By Theorem 6, it can be shown that, when the above bidding game converges, it converges

to the optimal solution to the SYSTEM problem.

Theorem 7. Let [ρ∗c], [ψ∗c], and [q∗c] be a fixed point of the above bidding game. Then [q∗c] maximizes
∑C

c=1 Uc(qc) over all feasible [qc] if all three vectors [ρ∗c], [ψ∗c], and [q∗c] are positive.

22

8 The Performance of Generalized Transmission Time Poli-

cies

Following from the decomposition of the SYSTEM problem, we need to find a policy for the

AP whose resulting [qc] solves the ACCESS-POINT subproblem. This is apparently a complex

problem since it involves 2C constraints. However, in Section 9, we will show that a very simple

on-line scheduling policy for this problem.

The scheduling policy is called the weighted-transmission time policy. Let us denote by fc(k)

the number of time slots that the AP spends transmitting the packet for client c in the kth

interval. At the beginning of the (k + 1)th interval, the weighted-transmission time policy sorts

all clients by
∑k

j=1 fc(j)

ρc
and assigns priorities accordingly, with clients with smaller

∑k
j=1 fc(j)

ρc

getting higher priorities.

Before showing that the weighted-transmission time policy solves the ACCESS-POINT sub-

problem, we first determine the precise [qc] resulting from a general class of policies that includes

the weighted-transmission time policy as well as the largest time-debt first policy defined earlier.

Definition 6. We say that a policy is a generalized transmission time policy with parameter

[(ac, bc)], where ac > 0 and bc ≥ 0, if, at the beginning of the (k + 1)th interval, the AP sorts all

clients according to ac

∑k
j=1 fc(j)− bck, and assigns higher priorities to clients with lower value of

this quantity.

Note that the weighted-transmission time policy is the special case where ac ≡ 1
ρc

and bc ≡ 0.

Also, the largest time-based debt first policy discussed in Section 5 is also a special case of this

class obtained by setting ac ≡ 1 and bc ≡ wc.

Theorem 8. For given [(ac, bc)], define {Hi} and {θi} recursively as follows. Let H0 := φ, θ0 :=

−∞, and

Hi := arg min
S:S)Hi−1

(IHi−1 − IS)−∑
c∈S\Hi−1

bc/ac∑
c∈S\Hi−1

1/ac

θi :=
(IHi−1 − IHi)−

∑
c∈Hi\Hi−1

bc/ac∑
c∈Hi\Hi−1

1/ac
, for all i > 0.

In selecting Hi, ties are broken arbitrarily. Then, the generalized transmission time policy with

parameter [(ac, bc)] results in a timely-throughput qc = pc
bc+θi(c)

ac
for each client c, where i(c) is

chosen so that c ∈ Hi(c)\Hi(c)−1.

23

Proof. For fixed i, define a subset Qi ⊆ RC by Qi := {[qc]|qc ≥ pc
bc+θi

ac
, ∀c /∈ Hi−1}, for all i.

The proof consists of two parts. First, we prove that the vector of timely-throughputs under the

generalized transmission time policy with parameter [(ac, bc)] approaches Qi, for all i. We then

prove that [qc] = pc
bc+θi(c)

ac
is the only feasible point in ∩iQi.

By Lemma 1, the timely-throughput of client c is lim infK→∞
pc

∑K
k=1 fc(k)

K . Hence,

qc ≥ pc
bc + θi

ac
⇔ lim inf

K→∞

∑K
k=1 fc(k)

K
≥ bc + θi

ac

⇔ lim inf
K→∞

ac

∑K
k=1 fc(k)− bcK√

acK
≥ θi√

ac
.

Thus, proving that the vector of timely-throughputs approaches Qi is equivalent to proving that

the vector [ac
∑K

k=1 fc(k)−bcK√
acK] approaches Vi := {[vc]|vc ≥ θi√

ac
,∀c /∈ Hi−1}, as K →∞.

We apply Theorem 1. Suppose that, at the beginning of the (K + 1)th interval, the vector

[ac

∑K
k=1 fc(k)−bcK√

acK] is not in Vi. The closest point in Vi to [ac

∑K
k=1 fc(k)−bcK√

acK] is [dc(K)] := [vc|vc =
ac

∑K
k=1 fc(k)−bcK√

acK , if c ∈ Hi−1 or ac
∑K

k=1 fc(k)−bcK√
acK ≥ θi√

ac
; vc = θi√

ac
, otherwise]. The hyper-

plane h([an
∑K

k=1 fc(k)−bcK√
acK]) is then {x ∈ RC |g(x) =

∑
c(

ac
∑K

k=1 fc(k)−bcK√
acK −dc(K))(x−dc(K)) =

0}. As g([ac
∑K

k=1 fc(k)−bcK√
acK]) > 0, we need to show g([acE{fc(K+1)}−bc√

ac
]) ≤ 0 under the general-

ized transmission time policy with parameter [(ac, bc)].

Without loss of generality, assume that the clients are sorted so that a1

∑K
k=1 f1(k)− b1K ≤

a2

∑K
k=1 f2(k)− b2K ≤ · · · ≤ am

∑K
k=1 fm(k)− bmK < θiK ≤ am+1

∑K
k=1 fm+1(k)− bm+1K ≤

. . . . Then, g(x) =
∑

c/∈Hi−1,c≤m(ac
∑K

k=1 fc(k)−bcK√
acK − θi√

ac
)(x− θi√

ac
). We manipulate the ordering

of clients so that clients in Hi−1 have higher priorities than other clients, while maintaining the

relative priorities among clients not in Hi−1. This manipulation will not increase the value of

E{fc(K +1)} for c /∈ Hi−1. As the value of g([E{fc(K+1)−bc}√
ac

]) is not influenced by E{fc(K +1)}
for c ∈ Hi−1, and is non-increasing with E{fc(K + 1)} for c /∈ Hi−1, this manipulation will not

24

decrease the value of g([ac
E{fc(K+1)}−bc√

ac
]). Let c0 = |Hi−1|+ 1. We then have

g([
E{fc(K + 1)− bc}√

ac
])

=
m∑

c=c0

(
ac

∑K
k=1 fc(k)− bcK√

acK
− θi√

ac
)(

acE{fc(K + 1)} − bc√
ac

− θi√
ac

)

=
m∑

c=c0

(
ac

∑K
k=1 fc(k)− bcK

K
− θi)(E{fc(K + 1)} − bc + θi

ac
)

=
m−1∑
c=c0

(
ac

∑K
k=1 fc(k)− bcK

K
− ac+1

∑K
k=1 fc+1(k)− bc+1K

K
)[

c∑

l=c0

(E{fl(K + 1)} − bl + θi

al
)]

+ (
am

∑K
k=1 fm(k)− bmK

K
− θi)[

m∑

l=c0

(E{fl(K + 1)} − bl + θi

al
)].

Let δc := (ac

∑K
k=1 fc(k)−bcK

K −ac+1
∑K

k=1 fc+1(k)−bc+1K

K), for c0 ≤ c ≤ m−1, and δm := (am

∑K
k=1 fm(k)−bmK

K −
θi). Then, δc < 0, for all c0 ≤ c ≤ m. Recall that IS is the average number of forced idle time

slots when the AP only schedules transmissions for clients in S. The above equation can be

rewritten as

g([
E{fc(K + 1)− bc}√

ac
])

=
m∑

c=c0

δc[IHi−1 − IHi−1∪{c0,c0+1...,m} −
c∑

l=c0

bl + θi

al
]

=
m∑

c=c0

δc(
c∑

l=c0

1
al

)[
(IHi−1 − IHi−1∪{c0,c0+1...,c})−

∑c
l=c0

bl/al∑c
l=c0

1/al
− θi] ≤ 0,

by the definitions of Hi and θi. By Theorem 1, we have established that the vector of timely-

throughputs under the generalized transmission time policy with parameter [(ac, bc)] approaches

Qi, for all i. It follows that the vector of timely-throughput also approaches ∩iQi.

We note that, for each [qc] ∈ ∩iQi, qc ≥ pc
bc+θi(c)

ac
. Further,

∑C
c=1

bc+θi(c)

ac
= T − I1,2,...,C .

Since the vector of timely-throughputs [qc] is feasible only if
∑C

c=1
qc

pc
≤ T − I1,2,...,C , it follows

that [pc
bc+θi(c)

ac
] is the only feasible point in ∩iQi. This completes the proof.

25

9 Optimality of Weighted-Transmission Time Policy for the

ACCESS-POINT Problem

Now we turn to the solution of the ACCESS-POINT problem. We assume throughout this section

that the payment of each client c is fixed at ρc. The goal of the AP is to maximize
∑C

c=1 ρcqc,

subject to feasibility of the vector [qc], i.e.,
∑

c∈S
qc

pc
+ IS ≤ T for all S, and qc ≥ 0 for all c.

Recall that the weighted-transmission time policy simply prioritizes clients by
∑k

j=1 fc(j)

ρc
, and

gives higher priority to clients with lower values of
∑k

j=1 fc(j)

ρc
.

Utilizing the precise computation of the timely-throughputs that are delivered under gen-

eralized transmission time policies, we prove that this weighted-transmission policy solves the

ACCESS-POINT subproblem.

Theorem 9. Given positive [ρc], the timely-throughput [q∗c] achieved by applying the weighted-

transmission time policy maximizes
∑C

c=1 ρcqc over all feasible [qc].

Proof. Recall that the weighted-transmission policy is a special case of the generalized transmis-

sion time policy with parameter [(1
ρc

, 0)]. By Theorem 8, let H0 = φ, θ0 = −∞, and

Hi := arg min
S:S)Hi−1

IHi−1 − IS∑
c∈S\Hi−1

ρc

θi :=
IHi−1 − IHi∑
c∈Hi\Hi−1

ρc
, for all i > 0,

and we obtain that the timely-throughput of client n is q∗c = pcρcθi(c).

We first show that θi+1 ≥ θi > 0, for all i > 0. Now θ1 > 0 holds since for any S 6= φ, IS <

T = Iφ = IH0 . Further, as IS is non-increasing with S and Hi−1 ⊂ Hi, it follows that θi ≥ 0,

for all i > 1. We now prove θi+1 ≥ θi by contradiction. Suppose to the contrary that θi+1 < θi.

Then,
∑

c∈Hi+1\Hi−1
ρc =

∑
c∈Hi+1\Hi

ρc +
∑

c∈Hi\Hi−1
ρc = (IHi − IHi+1)/θi+1 + (IHi−1 −

IHi)/θi > (IHi−1 − IHi+1)/θi. Therefore, θi >
IHi−1−IHi+1∑
c∈Hi+1\Hi−1

ρc
, contradicting the construction of

Hi and θi. Finally, θi > 0 since θi ≥ θ1.

Let µc = 0, for all c; ζH1 = 1/θ1, ζHi = 1/θi − 1/θi−1 for i > 1, and ζS = 0, for all S /∈ {Hi}.
We show that the vectors [q∗c], [µc], and [ζS] satisfy the KKT condition for the ACCESS-POINT

subproblem (17)–(20). Now (17) holds since

−ρc

q∗c
+

∑
S3c ζS

pc
− µc =

−1
pcθi(c)

+

∑i(c)
j=1(1/θj − 1/θj−1)

pc
= 0.

26

By the construction of {Hi} and {θi},

∑

c∈Hi

q∗c
pc

=
i∑

j=1

∑

c∈Hi\Hi−1

ρcθi =
i∑

j=1

(IHj−1 − IHj
) = T − IHi

,

for all i. Hence, ζS [
∑

c∈S
q∗c
pc
− (T − IS)] = 0, for all S, and (18) holds. Finally, (19) and (20)

are also satisfied since µcq
∗
c = 0 × q∗c = 0 and ζS ≥ 0. Thus, [q∗c] solves ACCESS-POINT with

parameter [ρc] and maximizes
∑C

c=1 ρc log qc over all feasible [qc].

10 Simulation Results

We now present simulation results concerning the three policies developed in this paper, ad-

mission control and packet scheduling for inelastic traffic, and utility maximization for elastic

traffic. Our simulations are based on the G.711 codec for VoIP, and the IEEE 802.11b standard,

conducted under the ns-2 simulation environment. Table 1 summarizes the relevant parameters

of our simulations. All results presented in this section are averages of 20 runs of simulations.

Table 1: Simulation Setup
Packetization interval 20 ms

Payload size per packet 160 Bytes
Transmission data rate 11 Mb/s
Transmission time (including MAC overheads) 610 µs

of time slots in an interval 32

10.1 Inelastic Traffic

We first consider scenarios where clients carry inelastic traffic; that is, each client has a specified

timely-throughput requirement. We consider two groups of clients, group A and group B. Each

client in group A requires a timely-throughput of 0.99 packets per interval. On the other hand,

each client in group B only requires a timely-throughput of 0.8 packets per interval. We assume

that the channel reliability, pc, of the cth client in each group is (60 + c)%. Using our admission

control algorithm, we find that a system with 11 group A clients and 12 group B clients is

feasible, while a system with 12 group A clients and 12 group B clients is not.

We compare our two largest debt first scheduling policies against two other policies. One

of the policies is the default mechanism of the 802.11 DCF, and the other is a random policy

27

(a) Performance of a feasible set (b) Performance of an infeasible set

Figure 3: Total delivery debt for inelastic traffic

where the AP assigns priorities randomly to all clients at the beginning of each interval. We

use the total delivery debt in the system,
∑

c(qc − actual timely-throughput of client c)+, as the

performance metric. Note that a system is fulfilled if and only if the total delivery debt converges

to zero.

The simulation results are shown in Figure 3. For the feasible system, the total delivery

debts under the two largest debt first policies converge to zero quickly, showing that they both

fulfill the system. On the other hand, both DCF and the random policy have much larger total

delivery debts. This suggests that these current standard mechanisms are suboptimal when

handling real-time flows. In Figure 3b, we also show that the total delivery debts of all the four

policies remain bounded away from zero for the infeasible system. This result confirms that our

admission control policy is indeed accurate. Though infeasible, among all the four policies, the

two largest debt first scheduling policies still achieve the minimum total delivery debt. Thus,

our proposed policies can still provide better performance even when the requirements of clients

are infeasible.

10.2 Elastic Traffic

We consider a system with 30 wireless clients. The utility function of client c is set to be Uc(qc) =

γc
qαc

c −1
αc

, where γc > 0 and 0 < αc < 1. By tuning the parameters γc and αc, we can generate a

28

(a) Average of total utility (b) Variance of total utility

Figure 4: Performance of the first setting

family of utility functions.

We compare four different policies. The first is our proposed policy, which consists of apply-

ing the weighted-transmission time policy as well as the bidding game (WT-Bid). The second is

one that only uses the weighted-transmission time policy but does not employ the bidding game

(WT-NoBid); that is, clients do not update their payments ρc. We then consider a random policy

(Rand) where the AP randomly assigns priorities to clients at the beginning of each interval. Fi-

nally, we also evaluate a policy where the AP gives higher priorities to clients with larger γc, and

break ties randomly (P-Rand). We evaluate the performance of each policy through its average

and variance of total utility over the 20 simulation runs.

We consider two settings. In the first setting, we choose pc = (50+ c)%, γc = (c mod 3)+1,

and αc = 0.3 + 0.1(c mod 5). In the second setting, we set pc = (20 + 2c)%, γc = 1, and

αc = 0.3 + 0.1(c mod 5). Simulation results for the two settings are shown in Figure 4 and

Figure 5, respectively. In both settings, our proposed policy achieves the highest total utility in

the system among all the four policies. In addition, it also converges very quickly, as its variances

are small for both settings.

11 Concluding Remarks

We have presented an account of a theory for serving real-time flows in wireless systems. We

have proposed a model that jointly captures the delay bounds and timely-throughput require-

ments of clients, as well as the unreliable nature of wireless transmissions. We have derived a

necessary and sufficient condition for a system to be feasible. Based on the condition, we have

29

(a) Average of total utility (b) Variance of total utility

Figure 5: Performance of the second setting

proposed an efficient algorithm for precise admission control. Two on-line scheduling policies

have also been proposed and proved to be feasibility optimal.

Further, we have considered the scenario where the timely-throughput requirements of the

real-time flows are elastic. We have formulated this as a utility maximization problem. It can

be further decomposed into two subproblems, which can be implemented as a bidding game

among clients and the AP. In this bidding game, clients apply a simple selfish strategy. We have

discussed the strategy for the AP in the bidding game and presented a simple on-line scheduling

policy for solving the problem faced by the access-point in this decomposition.

References

[1] I.-H. Hou, V. Borkar, and P. Kumar, “A Theory of QoS for Wireless,” in Proc. of INFOCOM,

2009.

[2] I.-H. Hou and P. Kumar, “Utility Maximization for Delay Constrained QoS in Wireless,” in

Proc. of INFOCOM, 2010.

[3] I.-H. Hou and P. Kumar, “Admission Control and Scheduling for QoS Guarantees for

Variable-Bit-Rate Applications on Wireless Channels,” in Proc. of MobiHoc, 2009.

[4] I.-H. Hou and P. Kumar, “Scheduling Heterogeneous Real-Time Traffic over Fading Wireless

Channels,” in Proc. of INFOCOM, 2010.

[5] I.-H. Hou and P. Kumar, “Utility-Optimal Scheduling in Time-Varying Wireless Networks

with Delay Constraints,” in Proc. of MOBIHOC, 2010.

30

[6] I.-H. Hou and P. Kumar, “Broadcasting Delay-Constrained Traffic over Unreliable Wireless

Links with Network Coding,” in Proc. of MOBIHOC, 2011.

[7] F. Kelly, “Charging and rate control for elastic traffic,” European Trans. on Telecommunica-

tions, vol. 8, pp. 33–37, 1997.

[8] F. Kelly, A. Maulloo, and D. Tan, “Rate control in communication networks: shadow prices,

proportional fairness and stability,” Journal of the Operational Research Society, vol. 49,

pp. 237–252, 1998.

[9] E. Eisenberg and D. Gale, “Consensus of subjective probabilities: The pari-mutuel

method,” The Annals of Mathematical Statistics, vol. 30, pp. 165–168, Mar. 1959.

[10] Y. Xiao and H. Li, “Evaluation of distributed admission control for the IEEE 802.11e EDCA,”

Communications Magazine, IEEE, vol. 42, Sept. 2004.

[11] D. Pong and T. Moors, “Call admission control for IEEE 802.11 contention access mecha-

nism,” in Proc. of GLOBECOM 2003.

[12] S. Garg and M. Kappes, “Admission control for VoIP traffic in IEEE 802.11 networks,” in

Proc. of GLOBECOM 2003.

[13] H. Zhai, X. Chen, and Y. Fang, “A call admission and rate control scheme for multimedia

support over IEEE 802.11 wireless LANs,” Wireless Networks, vol. 12, August 2006.

[14] S. Shin and H. Schulzrinne, “Call admission control in IEEE 802.11 WLANs using QP-CAT,”

in Proc. of INFOCOM 2008.

[15] D. Gao, J. Cai, and K. Ngan, “Admission control in IEEE 802.11e wireless LANs,” IEEE

Network, pp. 6–13, July/August 2005.

[16] D. Niyato and E. Hossain, “Call admission control for QoS provisioning in 4G wireless

networks: issues and approaches,” IEEE Network, pp. 5–11, September/October 2005.

[17] M. Ahmed, “Call admission control inwireless networks: A comprehensive survey,” IEEE

Communications Surveys, vol. 7, no. 1, pp. 50–69, 2005.

[18] L. Tassiulas and A. Ephremides, “Dynamic server allocation to parallel queues with ran-

domly varying connectivity,” IEEE Trans. on Information Theory, vol. 39, March 1993.

[19] M. J. Neely, “Delay analysis for max weight opportunistic scheduling in wireless systems,”

in Proc. of Allerton Conf., 2008.

31

[20] K. B. Johnsson and D. C. Cox, “An adaptive cross-layer scheduler for improved QoS support

of multiclass data services on wireless systems,” IEEE J. on Selected Areas in Communica-

tions, vol. 23, no. 2, 2005.

[21] A. Dua and N. Bambos, “Deadline constrained packet scheduling for wireless networks,”

in 62nd IEEE VTC Fall 2005.

[22] V. Raghunathan, V. Borkar, M. Cao, and P. Kumar, “Index policies for real-time multicast

scheduling for wireless broadcast systems,” in Proc. of IEEE INFOCOM 2008.

[23] S. Shakkottai and R. Srikant, “Scheduling real-time traffic with deadlines over a wireless

channel,” Wireless Networks, vol. 8, Jan. 2002.

[24] H. Fattah and C. Leung, “An overview of scheduling algorithms in wireless multimedia

networks,” IEEE Wireless Communications, vol. 9, pp. 76–83, Oct. 2002.

[25] Y. Cao and V. Li, “Scheduling algorithms in broadband wireless networks,” Proceedings of

the IEEE, vol. 89, pp. 76–87, Jan. 2001.

[26] X. Lin and N. Shroff, “Utility maximization for communication networks with multipath

routing,” IEEE Trans. on Automated Control, vol. 51, no. 5, pp. 766–781, 2006.

[27] M. Xiao, N. Shroff, and E. Chong, “A utility-based power-control scheme in wireless cellular

systems,” IEEE/ACM Trans. on Networking, vol. 11, no. 2, pp. 210–221, 2003.

[28] Y. Cao and V. Li, “Utility-oriented adaptive QoS and bandwidth allocation in wireless net-

works,” in Proc. of ICC, 2002.

[29] G. Bianchi, A. Campbell, and R. Liao, “On utility-fair adaptive services in wireless net-

works,” in Proc. of IWQoS, pp. 256–267, 1998.

[30] M. Loeve, Probability Theory II. Springer-Verlag, 1978.

[31] D. Blackwell, “An analog of the minimax theorem for vector payoffs,” Pacific J. Math, vol. 6,

no. 1, 1956.

[32] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction to Algorithms. MIT Press,

2009.

32

