A LOW POWER PREAMBLE DETECTION METHODOLOGY FOR PACKET BASED MODEMS

Kiran Gunnam, Pankaj Bhagawat, Gwan Choi, Mark Yeary^{*} Dept. of Electrical Engineering, Texas A&M University, College Station, TX-77840 * Dept. of Electrical and Computer Engineering, University of Oklahoma, Norman, OK-73109

ABSTRACT

In order to achieve frame synchronization in packetbased communication systems, a known sequence (preamble) is sent at the beginning of each packet. This paper presents a low power scheme for preamble detection using dynamic precision configuration. The proposed scheme is based on the observation that signal processing algorithms at the front end (including mixer, Square root raised cosine (SRRC) matched filter and code matched filter(CMF)) of the receiver, can be operated with minimum precision during the acquisition phase without incurring significant acquisition performance degradation. The result is an acquisition system design that consumes less than 25% of power dissipation that is consumed by other typical implementations.

Keywords: Packet Detection, Carrier Acquisition, 802.11b, 802.15, Burst Modem, Packet based Modem

EXTENDED SUMMARY

Hardware implementation of synchronization algorithms for many common wireless standards, such as Bluetooth, 802.11a and 802.11b take up more than 15% of the die area and total chip power comsumption [1]. In this communication, we report a low power, area efficient, high speed hardware implementation for frame synchronization. The idea is based on a systematic search for optimal bit precision for detecting the correlation peaks in presence of noise. As we would demonstrate, this will reduce, both, the acquisition time and power consumption of the hardware. Signal processing algorithms at the receiver, till the SRRC filter and pre-amble acquisition is usually implemented in application specific integrated circuits (ASICs) or FPGA as these are computationally intensive. The coherent receiver which operates at the symbol rate is usually done in a Digital Signal Processor. In Fig. 1 we show block diagram of a typical receiver. Fig. 2 gives an explanation for the typical acquisition operation in a flowchart format. Also, in Table.2 we have described functionalities of various blocks.

PRE AMBLE DETECTION

In most commercial systems the SRRC filter, even during the acquisition phase, operate at 12 bit precision

[4-5]. However, for computing the correlation, only one bit (the sign bit) is used. Obviously, rest of the 11 bits serve no purpose, and hence contribute to unnecessary power consumption. Under low signal to noise ratio (SNR), however, this approach does not compute autocorrelation of the preamble sequence accurately, thus leading to loss in acquisition rate. Since only one bit is used to compute the correlation, we might as well operate the front end of the receiver and SRRC filter at lower precision. Lowering the bit precision, however, causing quantization noise to affect the system acquisition performance. In this work we show that four bit quantization for SRRC filter and the front end is enough to get performance close to that of a system with 12 bit quantization. The key observation is, that the SRRC and chip matched filter, which computes the correlation with pre-amble, on the two most significant bits (MSB) of the SRRC filter outputs causes no performance loss. As mentioned earlier, lower precision leads to lower acquisition rate. To alleviate this problem we exploit the fact that repetition of Barker sequence improves acquisition rate by reducing the false detection probability and improving the detection probability [2]. DISCUSSION

Our results on 802.11b implementation show that the proposed method reduces the power consumption of the acquisition block by a factor of six compared to some industry implementations [4]. Table.1 shows that comparative reductions in operation count for acquisition. Table.2 shows the power estimation for operating the acquisition block in the search mode. However note that the acquisition block will be activated either on a periodic basis during the sleep mode and/or based on simple RF energy detector. Table.3 shows the power savings comparison for the proposed and work in [4]. The power dissipation of the acquisition block if done in full precision is around 1.2 W. The work in [4-5] applies the optimizations at the correlator only- this will have power savings of 8%. This work achieves the savings of 76% with respect to power dissipation of Full precision and consumes less than 25% of the power dissipation that is consumed by other typical implementations. Note that since the comparisons are done on FPGA platform, the power dissipation numbers are very high when compared to the numbers reported by ASIC implementations.

Bit error rate (BER) performance is not affected by this scheme as the receiver is operated with 12bit precision after the packet is acquired. Also, the acquisition time still remains 4μ s (4 packets), to meet the requirement of 802.11b standard. Indication of the preamble detection will be communicated to the medium access control (MAC) to ensure that any planned transmission is backed off to avoid possible collision. Since 802.11b preamble is longer, 128 barker sequences, we will use this for further validation activities without turning on the full precision receiver.

CONCLUDING REMARKS

A low power frame acquisition scheme with packet detection rate close to 1 is presented. An efficient and fast multi-level decision approach based on running a low precision version of the receiver front end along with the acquisition block is implemented in hardware for preamble detection. This approach can be used to reduce power requirements for other wireless modems such as one used in 802.15 standard.

6. REFERENCES

[1] M. Ammer, "Low Power Synchronization for Wireless Communication," December, 2004, *Ph.D.*

Thesis, Department of EECS, Univ. of California, Berkeley.

[2] S. Lee and J. Ahn, "Acquisition performance improvement by Barker sequence repetition in a preamble for DS-CDMA systems with symbol length spreading codes," *IEEE Transactions on Vehicular Technology*, vol. 52, issue 1, pp. 127-131. January 2003.

[3] H. Meyr, M. Moeneclaey, and S. Fechtel, *Digital Communication Receivers: Synchronization, Channel Estimation and Signal Processing.* 2nd Edition. Wiley Press, 1997.

[4] Altera Corporation, *Direct Sequence Spread Spectrum (DSSS) Modem Reference Design*, issue A-FS-14-1.0, September 2001. Online at: www.altera.com/literature/ fs/ fs14_dsss. pdf .

[5] Intersil, *HFA3861B Direct Sequence Spread Spectrum Baseband Processor*, datasheet, issue FN4816.2, February 2002. Online at: www. datashe

etcatalog.com/datasheets_pdf/H/F/A/3/HFA3861B.shtml .[6] Texas Instruments, Information on Data Converters Online at :http://focus.ti.com/analog/docs/dataconverter shome.tsp?familyId=82&contentType=4

FIG. 1 802.11b Digital Front end, F_{if} = 22MHz

If any of the above sequential steps fail, receiver goes to the sleep mode

FIG 3: FLOW CHART FOR ACQUISITION

Table 1: Hardware requirements for Modules in Front En	ıd.
Target Device: XC2VP40-6FG676	

Logic Utilization	12 bit Code Matched Filter	2 bit Code Matched Filter	SRRC MAC Filter	SRRC Filter
_			12 bit	4 bit
				(Distributed
				Arithmetic)
Number of Slices	724	162	1511	224
Number of Slice Flip Flops	673	193	2606	392
Number of 4 input LUTs	1268	248	1424	352
Number of MULT18X18s	8	2	12	0

 Table 2: Power Dissipation of Front End Modules during acquisition. Power of individual modules is estimated using the

 Xilinx Power estimation tool .For ADC power analysis is based on data from [6].

Module	12 bit Precision	4 bit Precision	Functionality
ADC	360 mW	120 mW	88 M Samples per second (MSPS). 1 Channel
	12 bit samples	4 bit samples	
Mixer	~0 mW	~0 mW	Fs/4 Mixing.
	12 bit 2's complement	2 bit 2's complement	2 Channels. Down converts to Baseband.
SRRC	730 mW	145 mW	Number of coefficients = 48 ,
	12 bit Samples and filter	4 bit samples and 4 bit	2 Channels. Provides receive pulse shaping.
	coefficients	coefficients	Input Sample rate: 88 MSPS.
	Xilinx MAC Filter	Xilinx Distributed	Output Sample rate: 44 MSPS
		Arithmetic Filter	Operating frequency: 196 MHz
			For Low precision filter, some of the coefficients
			are zeros and Xilinx core generator exploits this to
			implement distributed arithmetic filter.
			Both filters use the same input and output buffers.
			Only one of them is active at any time.
CMF	111 mW	22 mW	Performs de-spreading operation with Barker
	12 bit	2 bit	sequence and computes the correlation. Correlator
			is built with binary tree adder/subtractor followed
			by squaring circuits on both I and Q channels to
			compute the magnitude.
			Input Sample: 44 MSPS
			Output: 44 M correlation per second
			Operating frequency for both filters is 44 MHz
Total Power	1201	287	Detects the frame start and is composed of above
of Acquisition		Power savings: 76%	modules which follows the RF front end
Block			

 Table 3: Power Savings Comparison. *-estimated on Xilinx FPGA platform since [5] is based on Altera FPGA implementation.

Metric	Full Precision	[5]*	Proposed
Total Power	1201 mW	1100 mW	287 mW
Savings	0%	8%	76%