
1

Asynchronous Bypass Channel Routers

Tushar N. K. Jain, Paul V. Gratz, Alex Sprintson, Gwan Choi

Department of Electrical and Computer Engineering, Texas A&M University

{tnj07,pgratz,spalex,gchoi}@tamu.edu

Abstract—Network-on-Chip (NoC) designs have emerged as a replacement for traditional shared-bus designs for on-chip communica-

tions. Typically, these systems require fully balanced clock distribution trees to enable synchronous communication between all nodes

on-chip, resulting in higher power consumption. One approach to reduce power consumption is to replace the balanced clock tree

with a globally-asynchronous, locally-synchronous (GALS) mesochronous clocking scheme. NoCs implemented with a GALS clocking

scheme, however, tend to have high latencies as packets must be synchronized at every hop between source and destination. In this

paper, we propose a novel router microarchitecture for GALS NoCs which offers superior performance versus typical synchronizing

router designs. Our approach features Asynchronous Bypass Channels (ABCs) at intermediate nodes thus avoiding synchronization

delay. We also propose a new network topology that leverages the advantages of the bypass channel offered by our router design. Our

experiments show that our design improves the performance of a conventional synchronizing design with similar resources by up to

26% at low loads and increases saturation throughput by up to 11%.

Index Terms—NoC, mesochronous clocking, GALS, asynchronous interconnect, on-chip networks.

✦

1 INTRODUCTION

Networks-on-Chip (NoC) leverage the design techniques of
macro-scale multi-hop networks for communication between
various processing elements (PEs) on chip. NoCs have become
a popular solution to interconnect scalability. The relationship
between PE clocks is a challenge in NoC design. One approach
is to have a completely synchronized architecture. Typically,
synchronized architectures require fully balanced clock distri-
bution trees which consume a significant portion of the total
chip power [1]. On-chip power consumption can be reduced by
replacing the balanced clock tree with a globally-asynchronous,
locally synchronous (GALS) clocking scheme.

PEs in GALS systems are often referred to as being
mesochronous to one-another – of the same frequency but unre-
lated phase. The design of mesochronous synchronizers pose
several challenges. One challenge concerns latency for the syn-
chronization required to communicate between mesochronous
PEs. This latency directly impacts the communication perfor-
mance and the overall system cost [2].

With low communication latency as our objective, we pro-
pose a new router microarchitecture for mesochronous NoCs
which avoids synchronization delay at the intermediate nodes
via an asynchronous by-pass channel (ABC) around these nodes.
We also propose a novel 2-D grid based topology and routing
algorithm to complement our router design.

The rest of the paper is organized as follows. Section 2
discusses related work. Section 3 and section 4 describe the
router micro-architecture and its detailed operation respec-
tively. Section 5 proposes an efficient topology for intercon-
nected networks. In Section 6, we present the experimental
results and compare the performance of our router against a
comparable baseline router. Section 7 concludes the paper.

2 BACKGROUND

A critical aspect of mesochronous system design is the avoid-
ance of metastable state due to a violation of setup or hold
time of the flip-flops and registers present in the system. In
the metastable state the output of the system is unpredictable.
A well established approach for mesochronous NoCs was
proposed by Panades and Greiner, in the form of an optimized
bi-synchronous FIFO featuring low-latency and small footprint
[3]. This FIFO adds a latency of two and three clock cycles to
gain robustness against metastability.

Another solution, presented by Dally and Poulton, consists
of delay-line synchronizers, using a variable delay on the data
lines [4]. This delay avoids switching in the meta-stability win-
dow of the receiving registers. This solution requires careful,
post-manufacturing tuning to ensure metastability is avoided.
Variable delay lines also may make this solution expensive and
not always available in standard cell libraries.

Mangano et. al. proposed the skew insensitive link (SKIL)
solution to address metastability in mesochronous interfaces [5].
SKIL supports arbitrarily skewed clock signals by relying on
a two stage buffer structure by writing and reading flits into
and from the buffer in a ping-pong fashion.

It should be noted that some of the above synchronization
solutions could be used to augment our ABC approach, we
plan to explore this in future work. In each of the above tech-
niques, data must be synchronized at each intermediate node.
Synchronization delay at every hop forms a major portion of
the total latency and can be reduced by either lowering the
hop-count or reducing the per-hop delay.

New topologies to lower the hop count have also been
explored. Dally proposed express cubes which help in lowering
the per-hop latency rather than the hop count [6]. An express
cube is a k-ary n-cube, augmented by one or more physical
links or express channels that allow nonlocal messages to
bypass the intermediate nodes. Kim et al. and Grot et al.
proposed topologies with higher radix routers, leading to lower
hop counts but resulting in more complex router designs [7, 8].

Express virtual channels (EVCs) have also been proposed to
reduce per-hop delay. EVCs virtualize the physical links in
an express-cube, limiting wasted physical link bandwidth [9].
EVC-based flow control allows virtual bypassing of the packet
at the intermediate nodes thus reducing the per-hop delay. This
method is efficient for multi-hop packets but does not fare well
for communications between neighboring routers.

The ABC router design targets both the per-hop latency
and the hop count to reduce network latency. ABC routers,
thus, perform well for both long-haul and short-haul packet
communication. In contrast to EVCs and express cubes, ABCs
are physical links present in the router offering an asynchronous
bypass from the buffers. Since ABCs are inherent to the router,
they can be dynamically assigned at every hop, unlike EVCs
which can be allotted at specific nodes only. A packet takes an
ABC whenever possible thereby avoiding FIFOs and synchro-
nization delay, resulting in a lower per-hop latency.

2

!"#$%&'(
)"'%*

+,-%$.,(

/)"*0(+(

/)"*0(/(

/)"*0(/(

/)"*0(+(

/)"*0(1

2

3

4

5

6

5
4
3

2
6

7*"&$,")(+

/%89:9;

2<&*89:9;

5

1*"&$,")(+

7*"&$,")(/

1*"&$,")(/

5

3

4

2

2

6

3
4

6

6

5

2
/%89:9;2<&*89:9;

6"*=)(1)"*0(7">=%&

:&*">%&'(1)"*0(7">=%&

???

/)"*0(+

/%89:9;

/%89:9;

/)"*0(/

/)"*0(1

+/1(!"#$.,

Fig. 1: ABC router microarchitecture design.

3 ROUTER MICROARCHITECTURE

We propose an asynchronous router with five input and output
ports corresponding to the four neighboring directions and the
local processing element (PE). Each port’s link is comprised
of data bits, a clock bit, and an on/off flow control bit. All
the data communications through the network are carried out
in the form of packets, subdivided into flits, which are sent
through the NoC using wormhole flow-control along with a
source-synchronous clock signal. As both the data and clock
signals travel same link length and router logic, they face the
same delay and their skew does not increase. We employ a
unicast, deterministic, source routing algorithm. In this section
we describe the individual facets of our router in detail.

3.1 Packet Structure
Three most significant bits of each flit contain flit type (Header,
Body or Tail) and valid. The header flit also contains routing
information. At every hop, the 4th and 5th MSBs of the header
flit encode the routing directions for the packet at that particular
node. After every hop, the current routing bits are shifted away
until only a flag is left which marks arrival at the destination.

3.2 Buffers
Although there are no buffers along the ABC path, we em-
ploy bi-synchronous FIFOs (bi-FIFOs)[3] to store packets in
the event of congestion. In bi-FIFOs, writes are done in the
incoming clock domain and reads are done in the outgoing
clock domain. Fig. 1 shows the overall block diagram of the
router including detail for the output unit blocks. As shown,
our router contains five output unit blocks corresponding
to each direction. Block B is instantiated for the W and E
output directions and has additional buffers for turn paths as
compared to Block A which is used for the N and S output
directions. This is because the ABC router’s routing algorithm
disallows E or W turns to N or S outputs. Block C corresponds
to the local PE connected to the router. Overall the complete
router has 10 bi-FIFOs, two of which are shared between block
C and the two block Bs.

ABC routers employ on/off flow control. In this scheme,
when the number of free buffers in a direction falls below
a threshold value the node transmits an off signal to the
upstream node connected to it through the on/off link. Similarly,

Fig. 2: Block diagram for Dcontrol

an on signal is transmitted when the number of free buffers
exceeds the threshold. This signal needs to be synchronized
with respect to the outgoing clock of the upstream node. To
ensure no flit gets dropped in the process, the depth of the
FIFO must be four more than the maximum packet length.

The path joining the input port with the diametrically op-
posite output port, for example E to W, is referred to as a
straight path. It is comprised of a pair of FIFOs, a bi-FIFO and
a synchronous FIFO (s-FIFO), along with the ABC. All other
paths are referred to as turn paths as shown in Fig. 1. Each turn
path is made up of a single bi-FIFO. The s-FIFOs are standard
FIFOs which are clocked in the incoming clock domain. The
ABC is a bypass around the straight path FIFOS, as shown in
Fig. 1. Under certain conditions described below, the ABC can
be taken by the flit to avoid getting latched into the buffers.
The s-FIFOs are employed as backup to avoid dropping flits
in the event congestion disallows ABC use.

3.3 Router Arbiter

As shown in Fig. 1, the output channel is shared between ABC,
the straight path bi-FIFO and turn path bi-FIFOs. We have
employed a fixed priority arbiter with the maximum priority
to the straight path bi-FIFO followed by ABC, then the turn
paths and finally the local buffer.

As shown in Fig. 1, the router arbiter is divided into two
types of control modules for each output unit block, the clock
control module (Ccontrol) and the data control module (Dcon-
trol). The Ccontrol module arbitrates the output clock while
the Dcontrol module controls the output data. As the Ccon-
trol and Dcontrol modules receive inputs from two different
clock domains, metastability must be addressed. We avoid all
metastable conditions through control logic synchronization.
Further detail on metastability avoidance is given in Section 4.

On arrival of a head flit at the output, the router becomes
active and remains in this state until a tail flit arrives, when
it becomes idle. Arbitration occurs in the idle state, except if
an off signal is received from the downstream node while the
ABC is in use in which case the chosen path is switched to the
straight path bi-FIFO.

4 ROUTER OPERATION

In this section we present a detailed description of the working
of the router. In the following sections we describe the logic for
switching the clocks and discuss about the metastability issues
in our design.

3

Fig. 3: Waveform at a output port

4.1 Normal Operation
On its path through the network a packet traverses three
node classes, the source node, intermediate nodes and the
destination node; each node operates in its own clock domain.

At the source node, the packet leaves the local buffer and
propagates in the required direction along with the local clock.
At each hop, the the 4th and 5th MSBs of the header flit
determine whether a packet will travel straight or turn. At the
intermediate nodes, if a packet travels straight, the correspond-
ing flits try to utilize the ABC. These flits are simultaneously
latched into the s-FIFO. If all the buffers corresponding to
the output port are empty, these flits are transmitted to the
output port through the ABC and the contents of the s-FIFO are
flushed away. If the buffers are not empty, indicating presence
of older packets, the contents of the s-FIFO are forwarded to
the straight path bi-FIFO and the output port is fed by one
of the bi-FIFOs. Thus, the s-FIFO acts as a backup in case the
flit was not able to successfully utilize ABC. Alternately, if the
packet needs to turn at that particular node, the flits are latched
into one of the turn path bi-FIFOs.

If the outgoing flit was read out from any of the FIFOs, the
local clock at that particular node is transmitted as the outgoing
clock and the output port is said to be in the FIFO mode.
However, if the outgoing flit came from the ABC, the incoming
clock is forwarded as the outgoing clock and the output port
is referred to as in the ABC mode. This ensures that the output
data flits are synchronous with the output clock thus avoiding
potential metastability conditions downstream.

Each output port can either be in the ABC mode or the
FIFO mode at any given time. The trigger signal for transition
from one mode to another is generated in the outgoing clock
domain. This signal is then synchronized into the desired
clock domain by standard, two-cycle synchronization. Once the
trigger signal has been synchronized the transition to the new
clock begin and only after a successful transition of the clock
is the datapath switched, thus avoiding potential metastability
conditions in the control logic.

Transition from ABC mode to FIFO mode for a given output
port occurs in the following two cases: (i) If an off signal arrives
from the downstream node; (ii) If there is no packet passing
through the ABC and there is a packet in the turn-path.

In both the cases, first the output clock is switched to the
local clock. The datapath is then switched to straight path bi-
FIFO. If the router was idle before the switch and the bi-FIFO
is empty, the datapath is then switched to the turn path. The
router then waits for an on signal from the downstream node
after which the read signal of the selected FIFO is activated.
Altogether the transition from ABC mode to FIFO model takes
three cycle to complete, however, the added latency is not seen
by flits traversing the straight path because they are already
latched into the s-FIFO.

The transition from FIFO mode to ABC mode for a given
output port occurs when the FIFO mode is currently selected
and there are no flits occupying any FIFO associated with this

output port. This transition consists of three stages, the first
two cost two cycles each while the last stage costs three cycles:
(i) In the first stage, the read signals of all the bi-FIFOs are
deactivated. If all the turn buffers are empty, the straight path
is selected; (ii) In the second stage if the straight path bi-FIFO
is empty and the on signal is being received, the output clock
is switched to the incoming clock; (iii) In the final stage, the
datapath is switched to ABC.

However, if a flit arrives on the straight-path in any of the
above mentioned stages the transition is aborted and the datapath is
switched back to the straight path bi-FIFO at a cost of three additional
cycles.

4.2 Clock domain transitions
An important concern while designing the logic for transi-
tion between the clock domain was to avoid glitches during
switching because presence of glitches can cause unpredictable
behavior in the flip flops. The Ccontrol module at a particular
output port controls the output clock at that port. Now, if the
output mode is functioning in the FIFO mode and the data path
needs to be switched from one FIFO to another no switching
in the output clock is required as the output of all the bi-FIFOs
are in the local clock domain of that node. Clock needs to be
switched during transition from ABC mode to FIFO mode and
vice versa as these two modes operate in two different clock
domains which are characterized by the same frequency but
different phases. While the FIFO mode is in synch with the
local clock, the ABC mode is in synch with the incoming clock.
As mentioned earlier the output clock will either be the local
clock or the incoming clock and the selection of the output
clock is based on the select signal generated by the following
trigger inputs:

• The on/off signal from the downstream node.
• The active/idle state of the output port.
• The empty signal from all the buffers at the current node.
The active/idle state of the output port will always change

in the outgoing clock domain. The output port is said to be in
idle state if the last flit coming out from it was a tail flit else it is
said to be in active state. The on/off signal should ideally arrive
in the outgoing clock domain as the flits are written to the
downstream bi-FIFOs in the outgoing clock domain, however
because of the link delay between the nodes the on/off signal
needs to be re-synchronized into the outgoing clock domain.
The ”empty” signal is received from the bi-FIFOs of the current
node and is set when all the bi-FIFOs are empty. This signal is
generated in the local clock domain because reads from the bi-
FIFOs are done in this domain. Thus they will be synchronous
with the local clock during operation in the FIFO mode else we
will need to synchronize them. Now we switch from between
the turn path bi-FIFOs or from straight path to turn path or
vice versa only in the idle state. We can however switch from
ABC to straight path bi-FIFO in case an off signal is received.
An important point to note is that, without the arrival of an off

4

!"#

!$#

!%# !&#

!'# !(#

Fig. 4: ABC topologies evaluated.

signal, switching from ABC to FIFO mode can be caused only
when a flit has arrived in the turn paths. Now if depending
on the above mentioned three signals, a decision is made to
switch the clock from the present outgoing clock to the desired
outgoing clock, the following procedure is followed.

1) First, the present outgoing clock is switched off after the
arrival of its negative edge for one complete cycle of
the present outgoing clock. Thus, for one complete cycle
there is no clock at the output port. This gives us three
advantages. Firstly, in case a flit arrives at the output
port through the ABC it will not be forwarded to the
downstream node with a clock signal thus ensuring no
repeated flits will be generated during switching. Sec-
ondly, in case any glitches are generated they will not be
carried forward to the downstream node. Thirdly, because
the trigger inputs are all generated in the outgoing clock
domain, they will not change during the transition.

2) Next, at the negative edge of the desired outgoing clock
the output clock is switched on again. This is done by
synchronizing the trigger signal in to the desired clock
domain also. Due to the synchronization delay of two
cycles, the event of switching on the output clock follows
the event of switching off the output clock with a delay of
either one or two cycles depending on which clock had a
leading phase, the present outgoing clock or the desired
one.

4.3 Data path switching
The logic diagram for selecting the data path is shown in fig 2.
The Dcontrol module controls the switching of the data path.
It has as its inputs, the valid bit of the incoming flit and the
select signal generated from the Ccontrol module. The Dcontrol
module selects the ABC or the bi-FIFOs depending on whether
DSEL is set or reset. DSEL is set in the incoming clock domain
while reset in the local clock domain. This is because the select
signal which is generated in the Ccontrol module is set in
the incoming clock domain while reset in the incoming clock
domain. The valid flit of the incoming flit is also considered in
the logic to ensure that if a flit arrives during transition from
FIFO mode to ABC mode, the datapaths are switched back to
the FIFO mode.

4.4 Operation
The various stages of an output port of the router are shown in
the fig. 3 . In fig. 3,between marker 1 and marker 2, the output
port is allocated to the ABC, between marker 2 and marker

! "

$ %

&

Fig. 5: ABC topologies evaluation.

3, both the clock switching and the data path switching takes
place. Between marker 3 and marker 4, the straight path bi-
FIFO is selected. Between marker 4 and marker 5, switching
from the straight path bi-FIFO to the turn path bi-FIFO takes
place and from marker 5, the turn path bi-FIFOs are read out.

5 TOPOLOGY AND ROUTING ALGORITHM

The latency of a bi-FIFO is two cycles thus it takes at least two
cycles for a flit to appear at the output of the FIFO after it is
written. Suppose a head flit from the north must turn west and
suppose that all paths are free. Then, after two cycles the flit
will appear at the output of the turn-path FIFO and at the next
cycle the arbiter will select the respective FIFO. Thus, there
is a penalty of three cycles for a packet to make a turn. If,
however, the packet travels on a straight path taking ABCs, it
will only face the link delays. Thus, the router should preform
best with a topology in which maximum number of nodes are
connected through a straight path. As a 2-D topology makes a
good fit for the 2-D planar silicon technology, we have explored
several 2-D, grid-based topologies in an attempt to minimize
the number of turns and thereby the latency associated with
the ABC router’s turn path.

We consider six different grid based topologies. These six,
however, do not represent all possible topologies, we plan to
investigate an optimal ABC topology further in future work.
Fig. 4 depicts these six topologies on an 8x8 2-D grid layout.
Each topology consists of two continuous chains connecting all
nodes to maximize the number of straight path options.

To complement the router architecture we employ a modi-
fied version of standard XY dimension order routing (DOR).
Our algorithm attempts to optimize packet route based upon
assumptions of link and turn delays. Suppose that each link
between two adjacent nodes causes a delay of x clock cycles.
A turn costs 3 cycles in addition to the link delay. If a flit turns it
faces an additional delay of (3/x+1) times the link delay. Thus,
if the number of hops is less than or equal to (3/x + 1) hops,
traveling on ABC is a better choice then making a turn. When
traveling along the straight path requires more hops than this
value, turning leads to less delay in terms of clock cycles. Our
routing algorithm selects the path between a source destination
pair with the least delay based upon this estimation.

For our simulations we have arbitrarily assumed the link and
router delay to be 75% of a clock cycle, yielding a turn cost of
(3/.75 + 1) = 5. Thus, for the given topologies, we remain on
the same chain if the number of hops is less than or equal to
five else we make a turn. To avoid deadlock, the chains are not

5

0

10

20

30

40

50

60

A B C D E Fa

HO
P
CO

UN
T
(N
UM

BE
R
O
F
ST
EP
S)

TOPOLOGY

AVERAGE CASE

WORST CASE

b c d e f

Fig. 6: Average and worst
case hop count for the six
topologies.

(a) uniform random (b) transpose (c) bit-complement

Fig. 7: Average latency vs injection rate

connected end-to-end to form a ring and we only allow turns
from the black chain to grey but not vice versa.

5.1 Analysis
We have evaluated the topologies shown in Fig. 4, for minimal
delay and we have arrived at an ”optimal” topology among
the above mentioned six. From the evaluation results shown
in Fig. 6, topology (a) performs best with respect to both the
average as well as the worst case hop count. This is because
it is the only topology among the six, in which each node is
connected to all its neighbors through both the chains resulting
in lower cost paths in comparison to the other topologies for
all source and destination pairs.

6 EXPERIMENTS AND EVALUATION
In this section, we evaluate ABC routers experimentally to gain
an understanding of their performance under different types of
synthetic workloads. We also compare the performance against
a baseline, synchronizing router design.

6.1 Methodology
In these experiments, we evaluate a network of ABC routers
connected in the 8x8 2-D topology depicted in Fig. 4(a) and im-
plemented using the routing algorithm described in Section 5.
A fully synthesizable Verilog implementation of this network
was simulated to capture all ABC router network performance
results. The baseline design consists of an 8x8, 2-D mesh
network with XY DOR routing. In the baseline design packets
are synchronized at every hop, incurring a delay of three clock
cycles per hop. The baseline router has two, eight-flit-deep,
virtual channels (VCs) per port, yielding approximately the
same area overhead as the ABC router.

We evaluated three types of synthetic workloads: uniform
random, bit complement, and transpose. In all cases packets
were injected according to a uniform random process. Five
experimental runs were completed for each workload and the
mean and standard deviation of the results are shown. Packet
length was varied randomly between two to five flits and the
simulator was run for 1000 cycles of warm-up followed by 5000
monitored packets.

6.2 Discussion
Fig. 7 compares the latency performance of ABC router
with the baseline for uniform random, transpose, and bit-
complement workloads. In uniform random traffic, each source
is equally likely to send a packet to each destination. In
transpose traffic, node (x, y) sends packets to node (y, x).
In bit-complement traffic, node (x, y) exchanges packets with
node (x̃, ỹ) where, x̃ is the one’s complement of x. Among
the three traffic patterns, random traffic uniformly balances
load even for topologies and routing algorithms that normally
have poor load balance. The other two patterns concentrate on

individual source-destination pairs, thus stress the load balance
of a topology and routing algorithm [10].

For uniform random traffic, shown in Figure 7(a), ABCs offer
20% improvement in no-load latency and the traffic percent-
age at which saturation occurs is 10 percentage points more
then the baseline design. An improvement in the saturation
throughput occurs due to our topology’s increase bisectional
bandwidth as compared to a standard mesh network.

Transpose traffic, in Figure 7(b), shows little improvement
in the no-load latency. This is because, for transpose traffic,
packets must always take a turn due to the arrangement
of source-destination pairing. Saturation throughput is still
improved, however, as compared to the baseline design.

For bit complement traffic, shown in Figure 7(c), ABCs
offer an improvement of 26% in no-load latency as well as 4
percentage point improvement in saturation throughput. In bit
complement traffic, packets travel further than the other two
traffics; therefore, ABC’s benefits compound resulting in much
better performance than baseline.

Generally, ABCs outperform baseline for all the workloads.
An important feature common for all the three loads is the
shape of the curve. In all the three graphs the shape of the curve
for the ABC design is uneven, unlike the baseline. For example,
for random traffic there is a distinct bump in latency at 8%
traffic. This the point at which congestion causes the routers to
switch back and forth between FIFO and ABC modes. These
transitions lead to an increase in the relative rate of increase of
latency until the load becomes great enough that the routers
get locked in FIFO mode.

7 CONCLUSIONS AND FUTURE WORK

In this paper we present the design, implementation, and eval-
uation of ABC routers. ABC routers aim to achieve lower laten-
cies via bypassing synchronization in the intermediate nodes.
We also evaluate several topologies specifically designed for
this network. We present a detailed microarchitecture for an
ABC based router, a new topology and a novel routing algo-
rithm to complement the router design. Our experiments show
that our ABC based network has significantly lower latencies
compared to baseline.

This paper presents a basic framework for ABC based net-
works. Our future work will focus on improving the perfor-
mance of the network through lower latency synchronizing
techniques in the turn path. We also plan to investigate optimal
topologies for ABC enhanced routers. The presented network
offers the benefit of path diversity which could not be exploited
by the static routing algorithm thus necessitates employing a
dynamic algorithm. Furthermore, the network also needs to be
evaluated for realistic workloads.

REFERENCES
[1] T. Meincke, A. Hemani, S. Kumar, P. Ellervee, J. Oberg, T. Ols-

son, P. Nilsson, D. Lindqvist, and H. Tenhunen, “Globally

6

asynchronous locally synchronous architecture for large high-
performance ASICs,” in The IEEE International Symposium on
Circuits and Systems (ISCAS), vol. 2, pp. 512–515, 1999.

[2] P. Gratz, C. Kim, R. Mcdonald, S. Keckler, and D. Burger, “Imple-
mentation and Evaluation of On-Chip Network Architectures,” in
International Conference on Computer Design, pp. 477–484, 2006.

[3] I. Panades and A. Greiner, “Bi-Synchronous FIFO for Synchronous
Circuit Communication Well Suited for Network-on-Chip in
GALS Architectures,” in The First International Symposium on
Networks-on-Chip (NOCS), pp. 83–94, 2007.

[4] W. Dally and J. Poulton, Digital systems engineering. Cambridge
Univ Pr, 1998.

[5] D. Mangano, R. Locatelli, A. Scandurra, C. Pistritto, M. Coppola,
L. Fanucci, F. Vitullo, and D. Zandri, “Skew insensitive physical
links for network on chip,” in The 1st International Conference on
Nano-Networks and Workshops (NanoNet), pp. 1–5, 2006.

[6] W. Dally, “Express cubes: Improving the performance of k-ary n-
cube interconnection networks,” IEEE Transactions on Computers,
vol. 40, no. 9, pp. 1016–1023, 1991.

[7] J. Kim, W. Dally, B. Towles, and A. Gupta, “Microarchitecture of
a high-radix router,” ACM SIGARCH Computer Architecture News,
vol. 33, no. 2, pp. 420–431, 2005.

[8] B. Grot, J. Hestness, S. Keckler, and O. Mutlu, “Express Cube
Topologies for on-Chip Interconnects,” in The 15th International
Symposium on High Performance Computer Architecture (HPCA),
pp. 163–174, Feb. 2009.

[9] A. Kumar, L. Peh, P. Kundu, and N. Jha, “Express virtual channels:
towards the ideal interconnection fabric,” in The 34th annual
International Symposium on Computer Architecture (ISCA), pp. 150–
161, 2007.

[10] W. Dally and B. Towles, Principles and practices of interconnection
networks. Morgan Kaufmann, 2004.

	1 Introduction
	2 Background
	3 Router Microarchitecture
	3.1 Packet Structure
	3.2 Buffers
	3.3 Router Arbiter

	4 Router Operation
	4.1 Normal Operation
	4.2 Clock domain transitions
	4.3 Data path switching
	4.4 Operation

	5 Topology and Routing Algorithm
	5.1 Analysis

	6 Experiments and Evaluation
	6.1 Methodology
	6.2 Discussion

	7 Conclusions and Future Work

