
IEEE INFOCOM 2003 1

Design, Analysis and Experience of a Partial state
router

Phani Gopal V Achanta and A.L. Narasimha Reddy
Texas A&M University, College Station

Abstract— In this paper, we motivate the use of partial
state schemes in a wide variety of network applications.
Partial state can be used to arrive at a list of high band-
width flows which can be made use of in containing non-
responsive flows, providing better QoS for web traffic, and
alleviate certain Denial of Service (DoS) attacks. We show
the practical feasibility of partial state based schemes by
implementing a novel partial state scheme, LRU-FQ, on
Linux platform. The scheme makes use of an LRU cache
to classify flows into high bandwidth and low bandwidth
classes. A class-based fair queuing algorithm is used to ob-
tain a policy-driven control of the proportion of link band-
width allocated to high bandwidth flows being serviced at
the router. Empirical data is presented to bring out the
stated uses of partial state schemes.

Index Terms—Active queue management, LRU, fairness,
non-responsive flows, high bandwidth flows.

I. INTRODUCTION

A. Motivation

The adverse impact of non-responsive flows on the net-
work as well as responsive flows have been studied be-
fore [1], [2]. Fair Queuing [3] and its variants (for exam-
ple [4]) work well in containing the non-responsive flows.
However, we need mechanisms which are scalable with
the amount of traffic witnessed at the router. Partial state
schemes are one class of approaches which try to achieve
flow isolation with limited state.

Partial state schemes ([5], [6]) make use of a lim-
ited amount of state independent of the number of flows.
Given the heavy tailed distribution of Internet traffic ([7],
[8]) between mice (short-lived data transfers, eg. web
transfers) and elephants (long term flows), the traffic at
a router within the network will have a small proportion
of elephants and a large proportion of mice. Partial state
schemes try to utilize the limited amount of state to track

Phani Gopal V Achanta is with the Computer Science Department.
A.L. Narasimha Reddy is with the Electrical Engineering Department.
email:phani@cs.tamu.edu, reddy@ee.tamu.edu

This work is supported by an NSF ANIR grant and by the Texas
Higher Education Coordination Board

the non-responsive flows, or bandwidth hogs, or flows
above a certain target rate. The flows thus identified can be
separately managed while the stateless flows are managed
in an aggregate fashion. Thus, partial state schemes sepa-
rate the Identification and Resource Management phases.
Identification phase finds the flows to populate the lim-
ited state while Resource management phase enforces the
policy-driven resource control mechanism.

Further motivation in exploring the partial state ap-
proach is the possibility of containing bandwidth attacks.
Certain DoS attacks are based on ICMP/UDP streams
which try to consume bandwidth in order to reduce the
goodput. When DoS attacks are launched from a limited
set of sources, partial state mechanisms may allow identi-
fication of the high bandwidth flows. This can allow us to
contain such DoS attacks through a policy-driven control
of identified high bandwidth flows.

In this paper, we present a partial state router that em-
ploys a modified LRU policy [5] for state management
(flow identification) and Fair Queuing for managing re-
sources. We present the design, analysis and evaluation of
an LRU-FQ router. We report on our experience in evalu-
ating an experimental LRU-FQ router (implemented on a
Linux PC) in a number of application scenarios.

B. Previous Work

The issues addressed by this paper have been ap-
proached individually by various schemes. Active Queue
Management schemes usually address the resource man-
agement and fairness issues.

The various Active Queue Management schemes differ
in the amount of per-flow state maintained at the router.
Stateless schemes make their decisions based on over-
all characteristics observable at the router queue. These
characteristics can be the average queue length, aggregate
arrival and departure rates, packet counts etc. DropTail,
Random Early Detection [9], BLUE [10] and CHOKe
[11] are examples of stateless schemes.

Stateful schemes maintain a small amount of informa-
tion for each flow that the router observes. The flow can be

IEEE INFOCOM 2003 2

characterized as traffic between two end points defined ei-
ther by the transport layer(per connection) or the network
layer (per host). Longest Queue Drop (LQD) [12] and
FRED [13] are examples of such schemes. Fair Queuing
and its many variants employ per-flow state and schedul-
ing mechanisms to provide different levels of service.

New mechanisms have been recently proposed that al-
low individual packets to carry state information to allow
routers to make decisions about the service to be provided.
Diffserv networks [14] and Core-Stateless Fair Queuing
(CSFQ) [15] are two examples of such packet marking
schemes.

Partial State schemes achieve a balance between the
information to be stored and performance that can be
achieved. The state required to be maintained is pruned
by making use of techniques like sampling and caching.
SRED [16] arrives at a zombie list of ‘misbehaving’ flows
by probabilistically replacing a list entry if a random en-
try does not match the incoming packet. LRU-RED [5]
makes use of an LRU (Least Recently Used) cache to
modify the RED probability for cached flows. SACRED
[6] employs random sampling and holding to maintain
a cache of ‘marked’ flows which get penalized once the
queue length exceeds a dropping threshold. RED-PD [17]
makes use of the packet drop history at an RED router to
arrive at a list of flows exceeding a target bandwidth. Traf-
fic measurement techniques that employ fixed amount of
state have also been presented recently [18]. Approximate
fairness is achieved through partial state and RED mech-
anisms [19].

DoS attack prevention has been addressed at Network,
Operating System and Middleware level. Approaches like
SYN cookies [20] are specific to the type of DoS being
addressed. Other examples of such approaches are given
in [21] and [22]. Other approaches to DoS attacks include
Network Ingress filtering [23] to filter spoofed addresses,
Traceback algorithms [24] to throttle the attacker at the
source network, and bandwidth attack detection schemes
like MULTOPS [25].

Stateful active queue management schemes prove to be
quite effective in addressing the issue of network resource
control. However, they are not easily scalable to be imple-
mented on high-speed routers where the amount of traffic
is too large to maintain a per-flow state. Stateless tech-
niques fail to protect TCP flows from aggressive UDP
flows.

Most of the schemes mentioned provide a qualitative
improvement in performance seen by short term flows and
responsive flows. The ideal case would be to isolate the
non-responsive flows from the rest of the traffic and pro-
vide a mechanism for the router to decide the proportion

of non-responsive traffic it wants to handle. This paper
presents such a scheme that allows policy driven regula-
tion of non-responsive high bandwidth flows.

II. LRU-FQ: DESIGN AND IMPLEMENTATION

The previous section brought out the various issues in
network buffer management and the previous schemes
suggested for addressing the problem. This section lays
down the requirements of an active queue management
scheme and arrives at a design given the constraints of a
software based router.

A. Requirements

The following goals dictated the design of our scheme:
• Protect web mice from non-responsive elephants.
• Protect responsive elephants from non-responsive

elephants.
• Keep the per-flow state minimal in order to make it

feasible to implement the scheme at high speeds.
• Keep the per-packet handling cost minimal so that

packet forwarding rates on the modified routers re-
main same as on normal routers.

• Provide decoupled mechanisms for identifying non-
responsive elephants and for managing resource con-
sumption of such flows: this enables modular anal-
ysis of the scheme as well as independent adap-
tation/improvement of identification and resource
management algorithms.

Partial
State

FQ

Incoming

traffic
Outbound

traffic

W

W

2

1
Hit

Miss
Normal Queue

Partial State
Queue

Fig. 1. Partial state based router

This section describes the LRU-FQ scheme in detail as
well as the design tradeoffs involved in implementing a
partial state router on a Linux router.

B. LRU-FQ: the scheme

LRU-FQ scheme employs partial state to identify high
bandwidth flows. The identified flows are enqueued sep-
arately from the stateless flows as shown in Figure 1.

IEEE INFOCOM 2003 3

Is
Flow in cache?

Does
Cache Have

Space?

Admit flow with
Probability p

s

Record flow details
Initialize ‘count’ to 0

Enqueue in
Queue

‘count’ >=thresh

Move flow to top of cache
Increment ‘count’

Is

?

Flow Admitted?

Is

No

Yes

Yes

No No

Yes

Yes

No

Queue

Flow
Arrival

High bandwidth

Enqueue in Low bandwidth

Fig. 2. LRU-FQ : Flow chart

By employing two separate queues and appropriate re-
source management algorithms, the resource consumption
of high bandwidth flows can be regulated. In this paper,
we employ Fair queuing between the two queues to regu-
late the high bandwidth flows.

Our mechanism treats cached high bandwidth flows dif-
ferently from stateless low bandwidth flows. Our mecha-
nism separates the identification of high bandwidth flows
from resource management algorithms allowing both of
them to be optimized independently. In this paper, we
employ a modified LRU scheme for identifying the high
bandwidth flows. Figure 2 illustrates the working of the
identificaton algorithm with a flow chart.

An LRU cache is maintained for a fixed number of
flows. The LRU cache is searched for an entry corre-
sponding to the incoming flow. A match results in the
flow entry being updated and the corresponding cache en-
try being moved to the topmost position in the cache. A
miss results in the bottom most entry in the cache being
replaced with the incoming flow with a fixed probability
p [5]. Thus, flows need to be sending at consistently high
rates in order to have an entry in the cache.

Web traffic typically consists of many connections
which last for a small amount of time. A low-bandwidth
flow may still enter the cache due to the probabilistic ad-
mission process. In order to minimize the possibility of
classifying such flows incorrectly, we require a flow to ac-
cumulate a packet count that exceeds a threshold before it
can be classified as a high-bandwidth flow.

‘Hit’ traffic usually corresponds to high bandwidth
flows and the ‘miss’ traffic mainly constitutes of short-
term flows.

The scheme till now described the mechanism for iden-

tifying the high bandwidth flows. We use Start-Time Fair
queuing [4] for regulating the traffic from both queues.
Since any arbitrary positive weights can be assigned to
the queues, the router can control the traffic mix it wants
to support. STFQ simulates Generalized Processor Shar-
ing [3]. STFQ algorithm requires the calculation of a start
tag and a finish tag for each packet, the start tag being de-
pendent on the previous packet’s finish tag and the start
tag of the packet at the head of the queue. The packets are
scheduled in the increasing order of the start tags of the
packets. Since, STFQ works without involving all queue
states, it has a lower complexity.

The generic setup shown in Figure 1 and the LRU-FQ
scheme allows for the various applications suggested in
the next section.

C. Possible applications of LRU-FQ scheme

The LRU-FQ setup shown can be used for a number
of possible applications. By choosing appropriate state
management policies [5] [6], the cache can be managed to
contain mostly non-responsive flows. Such an identifica-
tion enables appropriate resource management techniques
where non-responsive flows can be controlled to consume
only a certain fraction of the link bandwidth.

It is also possible to manage the state in such a way
to identify top bandwidth hogs. Such an identification en-
ables DoS attacks staged with fewer flows that the amount
of the state in the cache can be contained by appropriately
containing the identified top flows.

The setup may find use as a scheme for Web mice to see
better service in terms of lower delay bounds and larger
connection rates. It is possible to control the delay ob-
served by the stateless flows by assigning the weight of
the normal queue to be higher than the weight of the par-
tial state queue. Bandwidth allocated to each queue can
be controlled through proper assignment of buffers while
delays can be affected through the assignment of proper
weights for the weighted fair queuing mechanism.

Another possible reason for considering partial state
mechanisms could be to employ separate queuing mecha-
nisms for high bandwidth and low bandwidth flows. Since
high bandwidth applications like FTP are impervious to
delay jitters, we could employ a partial state queue which
provides better bandwidth performance with coarser delay
performance.

D. LRU Analysis

In this section, we will provide a brief analysis of the
LRU identification scheme presented earlier. Consider a
flow at a rate ri. Let use denote pj as the probability of

IEEE INFOCOM 2003 4

ri

ri

ri

ri

pr
i

(hC−r)+pmC pmC

1 2 3 s 0

i

...........

Fig. 3. Markov chain for a flow location

finding this flow in the jth location in the cache and p0

as the probability of not finding the flow in the cache.
The flow’s location can be modeled as a Markov chain
as shown in Figure 3. Let h be the fraction of the traffic
that has hits in the cache and m be the miss fraction. If p

is the probability of admitting a flow on a cache miss, then
the flow will move from location j to j + 1 at a rate given
by (hC − ri) + pmC , C being the capacity of the link.
Once the flow is in the last location, s, of the cache, it may
be evicted at a rate of pmC . From any given location j in
the cache, the flow can be arrive at location 1 in the cache
at a rate ri and can find entry in the cache at a rate of pri.

Now, from the Markov chain, we get the following:

pri × p0 = pmC × ps

⇒ p0 =
mC

ri

ps (1)

(hC − ri + pmC) × pj = pj+1(hC − ri + pmC + ri)

for j = 1, 2, .., s − 2

⇒ pj+1 =
hC + pmC − ri

hC + pmC
pj (2)

for j = 1, 2, .., s − 2

(ri + pmC) × ps = (hC + pmC − ri)ps−1

⇒ ps =
hC + pmC − ri

ri + pmC
ps−1 (3)

From Equation 1,

ps =
hC + pmC − ri

ri + pmC
× ks−2p1 (4)

where
k =

hC + pmC − ri

hC + pmC
(5)

TABLE I
CACHE SIZE ANALYSIS

hit ri

C

fraction(h) 0.01% 0.05% 0.1% 0.5% 1%
0.01% 1705.5
0.05% 1738.9 344.36

0.1% 1780.5 352.67 174.20
0.5% 2113.8 419.17 207.35 37.95

1% 2530.4 502.30 248.80 46.09 20.81
5% 5863.2 1167.20 580.23 110.99 52.64

10% 10029.0 1998.00 994.25 191.83 92.08

Given
∑s

i=0 pi = 1, we have

mC

ri

ps + p1 + kp1 + k2p1 + .. + ks−2p1 + ps = 1

⇒
mC

ri

ps + (1 + k + k2 + .. + ks−2)p1 + ps = 1

After some simplification, we can get ps and then p0

from Equations 1 and 4 as

p0 =
mC × ks−1

ri + pmC + mCks−1(1 − p)

ks−1 = p0

(ri + pmC)

mC

(

1 − p0(1 − p)

) (6)

From Equation 6, we can find the cache size s required
to hold a flow of rate ri with any target probability p0 of
not finding it in the cache. As can be seen from above,
the required cache size is a function of traffic distribution
(represented by h and m in the equations above). Table I
shows the required cache size s for various target flow
rates (ri

C
) and different hit/miss rates. The miss probability

is kept constant at 0.01 and the admittance probability at
1/50.

We find that in most cases, the required cache size is
only a small factor larger than the number of flows that
we could find (ri

C
) at a given target rate (ri). This shows

that LRU identification scheme is quite efficient in meet-
ing stated requirements.

E. The Linux Design space

Linux offers a layer-based IPv4 network stack [26],
[27]. Routers are mainly involved in the task of packet
forwarding. Consequently, three layers are of importance
- physical layer, link layer and network layer. Figure 4
shows the various steps involved in forwarding a packet.

IEEE INFOCOM 2003 5

Since most decisions are taken at the output queue, the
design space for our scheme includes the queue enqueue
and dequeue events.

Error Checking
Verify Destination

Packet Arrival

Check and store
packet.
Enqueue packet

Scheduler invokes bottom half

Local packet
Deliver to upper layers

Route to destination
Update Packet

Packet enqueued

Scheduler runs device driver

Packet Departure

Device prepares
Packet

Layer

Link

Layer

IP

Layers

Upper

Request Scheduler
to invoke bottom half

Fig. 4. IP Forwarding in Linux

Traffic control is a phase which comes immediately af-
ter a packet has been prepared for transmission by the net-
work layer . Traffic control makes decisions on whether
to queue the packet, the order(priority) of packet trans-
mission, etc. Packets released by the traffic control are
directly picked by the network device driver for transmis-
sion.

Filter

Filter

Filter

Root Queuing Discipline

Class

Queuing Discipline

Class

Queuing Discipline
Packet

Enqueue
Request

Packet Dequeued

Fig. 5. Linux Traffic Control Architecture

Linux provides a modular architecture for QoS [28],
[29]. Figure 5 shows the typical layout of the components
of the Linux QoS, namely, queuing disciplines, classes
and filters.

Queuing discipline controls how the packets are han-
dled on a particular output interface. A queuing discipline
can be a rudimentary FIFO (First In First Out) queue or
can have multiple queues with packets being classified by
filters. Filters are classifiers which divide the outbound
traffic into classes. The classification can be based on type
of traffic, destination or source addresses, protocol infor-
mation etc. Availability of complex filters like u32 allow
the router to be set up with complex parsing rules.

The Linux diffserv architecture is scalable to an extent
that each queuing discipline can further classify its set
of packets. Parameters of individual components of the
traffic control are controlled using a user level application
name tc.

F. Design: Challenges and choices

Given the modular nature of Linux diffserv architec-
ture, we distribute the LRU-FQ scheme implementation
among the various QoS components. Maintenance of the
LRU cache and taking decisions on which queue to en-
queue the outbound packets on is implemented as a fil-
ter. The LRU filter needs weights of the high-bandwidth
and low-bandwidth queues as parameters along with the
scheme specific parameters like probability, threshold and
cache size. Since none of the existing filters allow for
state maintenance, we implemented a new LRU filter. The
state is maintained in a doubly linked list and a hash-based
data structure. Hashing enables faster detection of exist-
ing cache entries and the linked list allows for faster mod-
ification of the LRU cache contents.

The fair queuing component of the scheme requires a
queuing discipline which does class based fairness. The
existing fair queuing disciplines offered by Linux diff-
serv operate on flows within a queue. Since we need the
fair queuing to operate across multiple queues, we imple-
mented a class based fairness queuing discipline.

Queues belonging to this discipline are served using the
Start-Time Fair Queuing [4] algorithm (STFQ). Since the
fairness algorithm requires the maintenance of start tag
and finish tag, we extend the skbuff data structure1 to in-
clude this information.

The user level application, tc, has been modified to al-
low for usage of the new filter and queuing discipline.

G. Validation

In order to ensure that the scheme has been imple-
mented as per design, we have run a set of tests to validate
our implementation.

The issue of per-packet handling delay at the router can
be studied by observing the throughput offered to a reg-
ular UDP flow. We introduced a controllable amount of
delay in the forwarding path of the router code to study
the amount of delay that can be introduced without caus-
ing inordinate loss of throughput. The delay code was
introduced in the function ip route input function located
in the file /linux/net/ipv4/route.c.

1skbuffs are the Linux implementation of Socket buffers which are
used to carry Protocol Data Units (PDUs)

IEEE INFOCOM 2003 6

95.6

95.61

95.62

95.63

95.64

95.65

95.66

95.67

95.68

95.69

95.7

95.71

0 5 10 15 20 25 30 35 40 45

Re
ce

ive
d

Th
ro

ug
hp

ut
 (M

bp
s)

Time Delay (usec)

Normal Routing
Diffserv Routing

Start-Time FQ + LRU Diffserv Routing

Fig. 6. Timing Study of LRU-FQ

Figure 6 shows the results obtained by running the
experiment on a 100Mbps network with no cross traf-
fic. As can be seen from the graph, the addition of our
scheme does not cause a significant difference in the of-
fered throughput compared to the existing schemes. Thus,
we meet the initial goal of not reducing the throughput.

III. EXPERIMENTAL SETUP AND RESULTS

Given the aim of containing high bandwidth non-
responsive flows, the experiments conducted in this pa-
per are focussed on studying the effects of LRU-FQ pa-
rameters on its performance, and the amount of control
achieved on the non-responsive component in presence of
both long term and short term flows.

A. Experimental Test bed

All experiments were conducted on a Linux router
based on 2.4 version of the Linux kernel2(Table II).The
machines used to test the LRU-FQ implementation on
Linux were connected on a private network as shown in
Figure 7. The 100Mbps private network ensured that the
experiments were isolated from any spurious traffic spikes
from the university network.

The server side machine was chosen to be the fastest
so that there is no bottleneck at the receiving end. This
ensures that any performance characteristics observed are
due to the router and not due to the end-hosts’ capabilities.

The only external network port is connected to the
server side and was used for regular maintenance pur-
poses. The UDP and TCP traffic was seperated into two
networks as there is a possibility of UDP traffic adversely
affecting the TCP traffic when using the same hub/switch.

B. Containing non-responsive flows

Our scheme attempts to distinguish responsive flows
from non-responsive flows. This section shows the exper-
iments conducted to show the effectiveness of LRU-FQ in

2As of June 2002, the latest Linux kernel version is 2.4.17

ETH0

165.91.210.227

ETH1

10.0.0.1
ETH1

10.0.0.2

11.0.0.1 12.0.0.1

ETH0

ETH2
LAN

100Mbps
Switch

100Mbps
Switch

ETH0 ETH0

TCP Web
Client

ETH0
12.0.0.2

100Mbps
Hub

Client UDP Client

Server Router

11.0.0.2 11.0.0.3

Fig. 7. Experimental Setup

differentiating long term flows based on their responsive-
ness.

The initial experiment was run with the the LRU-FQ
parameters of cache size = 12, threshold = 125 and proba-
bility p = 1/50. The scenario has 20 TCP long term flows
and the effect of varying the queue weights is studied for
various number of UDP flows. The UDP flows are pump-
ing traffic to the full capacity of the link i.e. 100 Mbps.
Packet sizes were chosen to be 1472 bytes, the maximum
data segment possible, in order to avoid data fragments
from skewing the throughput results.

Given that the link load is constantly high, it is expected
that the UDP flows occupy the top entries in the LRU
cache and hence consistently remain in high-bandwidth
queue. This hypothesis is substantiated by the results seen
in Figure 8. The Partial State Queue is predominantly oc-
cupied by non-responsive flows: this is because the top
cache entries are usually occupied by UDP and the bot-
tom cache entries are constantly modified by the respon-
sive flows without crossing the threshold.

Ideally, the non-responsive traffic is limited to the set
limit. As we can observe, our results reach the ideal value
until a set limit of 30% when we have 2 or 3 UDP flows.
At lower limits, the work-conserving nature of fair queu-
ing algorithm favors the constantly backlogged high band-
width queue and hence we do not reach the ideal limits of
20% and 10%. With larger number of UDP flows, the
performance degrades as the UDP flows occasionally get
replaced from the cache by the TCP flows thus reducing
the effectiveness of containing non-responsive flows. The
effectiveness of containing the non-responsive flows can
be improved by either increasing the cache size or by pin-
ning the flows in the cache once identified.

IEEE INFOCOM 2003 7

TABLE II
MACHINE CONFIGURATIONS

CPU RAM Swap space Kernel
Server Pentium 4 1.70GHz 256MB 1 GB 2.4.17
Router AMD K-6 500MHz 128MB 500 MB 2.4.17

Web Client AMD K-6 500MHz 128MB 176 MB 2.2.16-22
TCP Client Pentium 166MHz 48MB 256 MB 2.4.17
UDP Client Pentium 166MHz 48MB 128 MB 2.4.17

Our results are compared with the normal router which
allows only about 7% of the link bandwidth for TCP ap-
plications in the presence of UDP flows (Presence of high
bandwidth UDP flows can be considered as a DoS at-
tack scenario also). The results clearly indicate the ef-
fectiveness of LRU-FQ in improving the fairness among
the flows by consistently providing higher bandwidths to
responsive flows.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90

T
C

P
 T

h
ro

u
g
h
p
u
t
F

ra
c
ti
o
n

LRU Queue Weight Proportion(%)

Ideal
Normal Router with UDP Flows=2

UDP Flows = 2
UDP Flows = 3
UDP Flows = 4

Fig. 8. Effect of non-responsive long term flows

In order to show that the LRU-FQ scheme is effec-
tive even with reduced non-responsive flow rates, we con-
ducted an experiment to study the effect of UDP sending
rates on the requested traffic mix. It can be seen in Fig-
ure 9 that the LRU-FQ scheme is effective at various non-
responsive loads. The results also show that at reduced
non-responsive loads, the Fair Queuing mechanism does
better at reaching the policy goals.

C. Web mice versus Elephants

Since the common web traffic has to compete with both
responsive and non-responsive long term traffic, we con-
ducted an experiment to study the effect of long term flows
on the web traffic. For generating the web traffic, we made

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

10 15 20 25 30 35 40

T
C

P
 T

h
ro

u
g
h
p
u
t
F

ra
c
ti
o
n

LRU Queue Weight Proportion(%)

Ideal
UDP Rate = 100%
UDP Rate = 80%
UDP Rate = 60%
UDP Rate = 40%

Fig. 9. Effect of varying non-responsive flow rates

use of the Webstone[30] benchmark software. Webstone
emulates realistic web traffic by allowing the user to spec-
ify a frequency histogram of the web files requested from
the web server.

In our experiment, we chose the long term respon-
sive(TCP) flows to be 20 and studied the effect of varying
non-responsive(UDP) flows on the web traffic. The web
traffic was governed by the frequency histogram shown
in Figure 10. The experiment was conducted by setting
the LRU-FQ parameters probability p = 1/50, threshold =
125, cache size = 12 and LRU to normal queue weights =
1:1.

The throughput results observed are shown in Table III.
The results show that web traffic is given a higher de-
gree of isolation from the long term flows by the LRU-FQ
scheme. This is reflected by the higher number of suc-
cessful web fetches in the observation period. The long
term TCP flows are still getting the assigned proportion of
the bandwidth.

The corresponding results for the delays observed are
shown in Table IV3. Connection time is the time taken by

3Avg, Dev, Min and Max imply Average, Standard Deviation, Mini-

IEEE INFOCOM 2003 8

TABLE III
BANDWIDTH RESULTS FOR WEB MICE

UDP UDP # of Web TCP TCP
Flows Throughput Requests Throughput Fraction

Normal 2 89.450 1313 5.883 0.0617
Router 3 89.796 1284 5.548 0.0581

4 89.125 927 6.212 0.0651
LRU-FQ 2 45.727 13915 44.916 0.4955
Router 3 45.733 13828 44.830 0.4950

4 46.237 13632 44.514 0.4905

Fig. 10. Web mice file histogram

the TCP to establish a connection while response time is
the actual time taken to transfer the data file. As can be
seen from the table, web traffic encounters lower delays
with the LRU-FQ router. The lower delays are both in
terms of average delay as well as the jitter thus providing
a better scheme for real-time data than normal routers.

D. Effect of varying cache size

In order to study the impact of cache size on the perfor-
mance, we ran several experiments with different cache
sizes. The graph in Figure 11 brings out this aspect in de-
tail. The parameters used for this experiment were prob-
ability p = 1/55, threshold = 125, number of TCP flows =
20, and the fairness weights for both queues were equal.

For lesser cache sizes, the observed throughput fraction
for TCP flows falls much below the ideal case. This can
be explained by the fact that choosing a cache size to be
exactly equal to the number of non-responsive flows does

mum and Maximum respectively

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

4 6 8 10 12 14 16 18

T
C

P
 T

h
ro

u
g
h
p
u
t
F

ra
c
ti
o
n

LRU Cache size

UDP Flows = 2
UDP Flows = 4
UDP Flows = 6
UDP Flows = 8

Ideal

Fig. 11. Effect of cache size on LRU-FQ scheme

not take into account the possibility of a non-responsive
flow being probabilistically replaced in the LRU. Thus,
keeping the cache size larger than the non-responsive
flows reduces the probability of non-responsive elephants
being the bottom entry of the LRU. It has been observed
empirically that choosing a cache size larger than thrice
the number of non-responsive flows provides a good per-
formance.

The other aspect is the choice of excessive cache size
which will result in a large portion of responsive traffic
also being treated as part of the LRU cache thus resulting
in degraded performances. Sensitivity of the scheme to
the cache size can be further reduced by employing a rate-
based threshold to pin the high bandwidth flows’ entries
in the cache.

E. Performance of LRU-FQ under normal workloads

The LRU-FQ scheme has been shown to work well
when there is a constant non-responsive load presented
to the router. This section shows that the scheme does not

IEEE INFOCOM 2003 9

TABLE IV
DELAY RESULTS FOR WEB MICE

UDP Response Time sec Connection Time sec

Flows Avg Dev Min Max Avg Dev Min Max
Normal 2 2.540 4.429 0.026 45.080 1.952 3.074 0.0118 45.007
Router 3 2.696 4.923 0.026 93.017 1.935 3.110 0.0115 45.013

4 3.064 4.826 0.026 45.028 2.112 3.415 0.0122 45.005
LRU-FQ 2 0.255 0.849 0.012 21.149 0.136 0.661 0.0014 21.014
Router 3 0.258 0.854 0.013 22.265 0.131 0.589 0.0017 9.034

4 0.260 0.875 0.013 21.054 0.134 0.614 0.0020 9.026

hinder flows which are either responsive or using atmost
their share of the link bandwidth. For this purpose, the
following experiments were conducted.

Statistics were collected for a responsive(TCP) load
with the LRU-FQ scheme activated and deactivated.
When the LRU-FQ scheme is active, it is configured to
have equal fairness weights for both queues. The re-
maining parameters were configured to be cache size = 9,
threshold = 125 and probability p = 1/55. Table V shows
the corresponding results.

The results substantiate the claim of responsive loads
not being adversely effected by the scheme with aribitrary
parameters. The other normal scenario would be the case
where non-responsive flows are sending at their fair share:
the scheme should not penalize the non-responsive flows
when they are sending at their fair rates. In order to test
this scenario, we conducted an experiment where the non-
responsive flows are bandwidth limited to their fair share
and the effect of the scheme is studied. Table VI shows the
corresponding results. The results show that the scheme
does take the sending rate into consideration.

IV. CONCLUSIONS AND FUTURE WORK

This paper presented the various applications of par-
tial state based routers. A novel scheme, LRU-FQ, is pre-
sented which exploits a partial state to provide better flow
isolation and better delay seen by web traffic. The scheme
has been shown to be practically feasible and provides
the network administrator the control of the actual amount
of non-responsive traffic flowing through the router. Our
Linux implementation shows that the cost of partial state
based routers is negligible on packet forwarding through-
put.

The scheme can be extended further to study aggregate
traffic instead of flow based studies. For example, source
address based aggregation can help in identifying DoS at-
tacks from a single network. The scheme can be extended
to detect the presence of non-responsive traffic in order to

dynamically activate the scheme thus reducing processing
overhead when no such traffic is present.

The current design of LRU-FQ makes it a policy driven
scheme wherein the network administrator decides the
proportion of non-responsive traffic to be contained. De-
tection of non-responsive fraction of the traffic could au-
tomate the parameter tuning of the scheme. Implementa-
tion of partial state mechanisms on network processors is
currently being investigated.

REFERENCES

[1] Sally Floyd and Kevin Fall, “Promoting the use of end-to-end
congestion control in the Internet,” in IEEE/ACM Transactions
on Networking, pp. 458-472, August 1999.

[2] Inkoo Kim, “Analyzing Network Traces To Identify Long-Term
High Rate Flows,” Technical report TAMU-ECE-2001-02, Texas
A&M University, Computer Engineering Dept., May 2001.

[3] A.K. Parekh, “A Generalized Processor Sharing Approach to
Flow Control in Integrated Services Networks,” PhD thesis, De-
partment of Electrical Engineering and Computer Science, MIT,
1992.

[4] Pawan Goyal, Harrick M. Vin and Haichen Cheng, “Start-time
Fair Queuing: A Scheduling Algorithm for Integrated Services
Packet Switching Networks,” in IEEE/ACM Transactions on
Networking, pp. 690-704, October 1997.

[5] Smitha and A.L.N. Reddy, “LRU-RED: An active queue man-
agement scheme to contain high bandwidth flows at congested
routers,” in Proceedings of Globecomm, November 2001.

[6] D. Tong and A.L.N. Reddy, “QoS enhancement with partial
state,” in Proceedings of International Workshop on QoS, UCL,
London, pp. 87-96, June 1999.

[7] S. Ben Fred, T. Bonald, A. Proutiere, G. Regnie, and J.W.
Roberts, “Statistical bandwidth sharing: a study of congestion
at flow level,” in Proceedings of ACM SIGCOMM conference,
pp.111-122, August 2001.

[8] Carlos Cunha, Azer Bestavros and Mark Crovell, “Characteris-
tics of WWW Client-based Traces,” Technical report BU-CS-95-
010, Boston University, CS Dept., July 1995.

[9] S. Floyd and V. Jacobson, “Random early detection gateways for
congestion avoidance,” in IEEE/ACM Transactions on Network-
ing, pp. 397-413, August 1993.

[10] W. Feng, D. Kandlur, D. Saha and K. Shin, “A New Class of
Active Queue Management Algorithms,” Technical report CSE-
TR-387-99, U. Michigan, CS Dept., April 1999.

IEEE INFOCOM 2003 10

TABLE V
LRU-FQ UNDER NORMAL WORKLOAD

Responsive Normal Router LRU-FQ Router
Flows Average Std. dev Total BW Average Std. dev Total BW

15 6.194959 0.273623 92.92439 6.196750 0.104381 92.95125
20 4.637118 0.246848 92.74325 4.627254 0.235561 92.54508
25 3.710390 0.179423 92.75976 3.709822 0.285475 92.74556

TABLE VI
LRU-FQ UNDER NORMAL MIXED WORKLOAD

UDP TCP Average UDP Average TCP Ideal Average
Flows Flows B/w (Mbps) B/w (Mbps) B/w (Mbps)

2 18 4.9141 4.6327 4.6608
3 17 4.7240 4.6607 4.6702
4 16 4.5839 4.7015 4.6780

[11] Rong Pan, Balaji Prabhakar and Konstantinos Psounis,
“CHOKE, A Stateless Active Queue Management Scheme for
Approximating Fair Bandwidth Allocation,” in Proceedings of
IEEE Infocomm, pp. 942-951, March 2000.

[12] B. Suter, T.V. Lakshman, D. Stiliadis and A.K. Choudhary, “De-
sign Considerations for supporting TCP with per-flow queuing,”
INFOCOMM’98.

[13] Dong Lin and Robert Morris, “Dynamics of Random Early De-
tection,” in Proceedings of ACM SIGCOMM conference, pp.
127-137, September 1997.

[14] K. Nichols, V. Jacobson and L. Zhang, “A Two-bit Differenti-
ated Services Architecture for the Internet,” draft-nichols-diff-
svc-arch-00.txt, INTERNET DRAFT, December, 1997.

[15] Ion Stoica, Scott Shenker and Hui Zhang, “Core-Stateless Fair
Queuing: A Scalable Architecture to Approximate Fair Band-
width Allocations in High Speed Networks,” SIGCOMM’98.

[16] T.J. Ott, T.V. Lakshman and L.H. Wong, “SRED: Stabilized
RED,” in Proceedings of IEEE Infocomm, pp. 1346-1355, Vol.3,
March 1999.

[17] Ratul Mahajan, Sally Floyd and David Wetherall, “Controlling
High-Bandwidth Flows at the Congested Router,” in Proceed-
ings of International Conference on Network Protocols (ICNP),
November 2001.

[18] Cristian Estan and George Varghese, “New Directions in Traffic
Measurement and Accounting,” in Proceedings of SIGCOMM
Internet Measurement Workshop, 2001.

[19] Rong Pan, Lee Breslau, Balaji Prabhakar and Scott Shenker,
“Approximate fairness through differential dropping,” in ACM
SIGCOMM Computer Communication Review, Volume 32, Is-
sue 1, January 2002.

[20] “SYN Cookies,” Available online at
http://cr.yp.to/syncookies.html

[21] C. L. Schuba, I. V. Krsul, M.G. Kuhn, E.H. Spafford, A. Sun-
daram and D. Zamboni , “Analysis of a Denial of Service Attack
on TCP,” in Proceedings of IEEE Symposium on Security and
Privacy, Oakland, CA, May 1997.

[22] “Packeteer Inc. White Papers,” Available online at
http://www.packeteer.com/solutions/resources.

[23] P. Ferguson and D. Senie, “Network Ingress Filter-

ing: Defeating Denial of Service Attacks which em-
ploy IP Address Spoofing,” Internet Draft, January 1998,
http://www.landfield.com/rfcs/rfc2267.html.

[24] Steve Bellovin, Marcus Leech and Tom Taylor, “ICMP
Traceback Messages,” Internet Draft, October 2001,
http://www.ietf.org/internet-drafts/draft-ietf-itrace-01.txt.

[25] Thorner M. Gil and Massimiliano Poletto, “MULTOPS: a data-
structure for bandwidth attack detection,” in Proceedings of the
10th USENIX Security Symposium, Washington, D.C., August
2001.

[26] Glenn Herrin, “Linux IP Networking: A Guide to Implementa-
tion and Modification of the Linux Protocol Stack,” May 2000,
Available online at http://www.cs.unh.edu/cnrg/gherrin

[27] David Rusling, “The Linux Kernel,” January 1998, Available on-
line at http://www.tldp.org/LDP/tlk/tlk.html

[28] Werner Almesberger, Jamal H. Salim and Alexey Kuznetsov,
“Differentiated Services on Linux,” June 1999, Internet Draft
<draft-almesberger-wajhak- diffserv-linux-01.txt>.

[29] Werner Almesberger, “Linux Traffic Control - Imple-
mentation Overview,” April 1999, Available online at
ftp://icaftp.epfl.ch/pub/people/almesber/pub/tcio-current.ps.gz

[30] Mindcraft Incorporated, “Webstone 2.5 benchmark,” Available
online at http://www.mindcraft.com/webstone/.

