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ABSTRACT

An Active Queue Management Scheme to Contain
High Bandwdith Flows at a Congested Router. (May 2001)
Smitha, B.E.,Karnataka Regional Engineering College, India

Co—Chairs of Advisory Committee: Dr. Riccardo Bettati

Dr. A.L.N. Reddy

Incorporating mechanisms in the router to enable end-to-end congestion control
is important in order to prevent the network collapse. Routers should be able to
recognise misbehaving flows and penalise them.

In this thesis, we propose a queue management scheme that is based on partial
state. It empowers the routers to contain high bandwidth flows at the time of con-
gestion. The scheme maintains an LRU cache at the routers to record information
about the high-bandwidth flows. This can be incorporated in RED, an active queue
management scheme. The proposed scheme possesses all the advantages of RED.
In addition, it lowers the drop rates of short-lived flows and also those high band-
width flows that reduce their sending rate when congestion is indicated, by use of
preferential dropping policies.

It is shown by means of simulations that the method is effective in achieving
the objective. The overhead involved is low and the operations incur O(1) cost per

packet.



my parents, Subbu and Supri

v



ACKNOWLEDGMENTS

I would like to thank my advisor, Dr. Reddy for having guided me through this
research. Regular reviews of the research with him were instrumental in keeping this
research focused and going, and I’'m immensely grateful to him for that. His organized
ways during this research were awe-inspiring and made learning easy. I appreciate the
freedom he gave me while working on this research and the great amount of interest
he has taken in it. I thank him for having given me an opportunity to work with him.

I thank Dr. Bettati and Dr. Vaidya for their interest in this research and also for
their invaluable suggestions. I wish to thank Dr. Mahapatra for consenting to review
the thesis. Many thanks to the Institute for Scientific Computation for having given
me the resources to conduct this research.

I’d like to thank Goli, Rashmi and Sowmya for listening with great patience, at
various times during this research, to the details of the thesis.

I’d like to thank my parents for having made this possible and for all the support
they have given me. I'd like to thank Subrat for keeping alive the motivational factor

and Supri for helping me in many ways.



TABLE OF CONTENTS

CHAPTER

I INTRODUCTION . . . . . . . oo s

A. Related work . . . ... .. ... oo
1. Various buffer management schemes . . . .. ... ..
2. Comparison of the schemes . . . . ... ... ... ..
B. Shortcomings of the existing approaches . . . . . .. ...
C. Organization . . . . . .. ... ... . o

II THE PROPOSED SCHEME . . . . ... ... .. ... .....

A. Why another scheme? . . . . . .. .. ... ... .. ...
B. Overview of the scheme . . . . . . . . . ... ... ... ..
1. Identifying high bandwidth flows . . . . . .. ... ..
2. Cachesize . ... . ... ... ...
3. Penalizing high bandwidth flows . . . . ... ... ..
4. LRU coupled with RED . . . . . .. ... ... ....
C. Implementation . . . . . . .. ... ... ... ...
1. LRU operation . . . . . . .. ... ... ... .....
2. Preferential dropping . . . . . .. ...
3. Cost . . . .o
D. Scheme 1. . . . . . . ... .
1. Problems encountered . . . . . .. ... ... .. ...
E. Scheme 2. . . . . . ...

II1 EVALUATION CRITERIA . . . . . ... ... .. .. ...,

A. Protecting short-lived flows . . . . . . . ... ... ...
B. Greater penalty for high bandwidth flows . . . . . . . . ..
C. Greater penalty for unresponsive high bandwidth flows

D. Performance when compared to other schemes . . . . . . .

IV SIMULATION RESULTS . . ... ... ... . ... ....

1. Containing high bandwidth unresponsive flows

2. Impact of multiple congested links . . . .. ... ...
3. Reducing RTT bias . . .. .. ... ... .......
4. Effect of varying load on the bottleneck link . . . . . .

vi

Page

O J Ot N N

Ne}

10
11
15
15
18
19
19
19
22
22
24
25

30

30
30
31
31



vil

CHAPTER Page
5. Effect of varying cachesize . . . . . .. ... .. ... 47

6. Effect of varying threshold . . .. ... ... .. ... 52

7. Effect of varying interval . . . . . ... ... .. ... 54

8. Sampling method . . . . . ... ..o 54

\Y% FUTURE WORK . . . . . .. .. .. . .. 57

VI CONCLUSION . . ... o e 58
REFERENCES . . . . . . . . e 59



viii

LIST OF TABLES

TABLE Page

I TCP & UDP data: containing high bandwidth unresponsive flows . . 34



FIGURE

10

11

12

13

14

15

16

17

18

19

X

LIST OF FIGURES

Page
LRU operation -1 . . . . . . . . . ... ... ... .. .. ... 16
LRU operation -2 . . . . .. . ... ..o 17
Drop probability for flows in the proposed scheme . . . . . . . . . .. 18
Operation of the LRU cache . . . . . . . . ... ... ... ...... 20
Modified drop probabilities . . . . . . . ... ... ... ... ... . 21
Algorithm for scheme 1 . . . . . . . .. ... Lo oL 23
Too much state information . . . . . .. ... ... ... 26
Including ’'rate’ information in 'count” . . . . . .. .. ... 27
Modified algorithm for updating 'count’ in scheme 2 . . . . . . . .. 28
Topology used for simulations . . . . . . ... ... .. ... ..... 33
Topology used for simulations with multiple congested links . . . . . 37
UDP throughput and drop rates at the congested routers . . . . . . . 39
TCP throughput and drop rates at the congetsed routers . . . . . . . 40
UDP and TCP cache occupancies at the congested routers . . . . . . 41
Comparison of TCP data with other schemes . . . . ... ... ... 43
Comparison of UDP data with other schemes . . . . ... ... ... 44
Comparison of HTTP data with other schemes . . . . ... ... .. 45
Effect of TCP flows with varying RTTs. . . . . . ... .. ... ... 46
Effect of varying load on the bottleneck link - TCP data . . . . . .. 48



FIGURE

20

21

22

23

24

Page
Effect of varying load on the bottleneck link - UDP data . . . . . .. 49
Effect of varying cache size . . . . ... ... ... .. ... ... .. 51
Effect of varying threshold . . . . . . . . . ... ... ... 53
Effect of varying interval - UDP droprate . . . .. .. ... .. ... 55

Effect of sampling . . . . . .. .. ... Lo oo 56



CHAPTER 1

INTRODUCTION

The Internet consists typically of two types of sources, viz., those that respond to
congestion by reducing their sending rate and those that do not. Routers, therefore
need to implement mechanisms to control congestion, and not merely depend on
the end nodes to implement congestion control. The need for end-to-end congestion
control has been discussed in [1]. It talks about the negative impacts of non-congestion
controlled best effort traffic on the Internet. It emphasizes that relying on end nodes
to use end-to-end congestion control as not being a pragmatic approach. This leads to
developing mechanisms within the network so that resource allocation and usage can
be actively controlled. It talks about various kinds of congestion collapse that might
occur and about how unresponsive flows could contribute to this in the Internet. Of
these, the paper stresses on congestion collapse due to undelivered packets. This
happens when bandwidth is wasted by delivering packets that are dropped in the
network even before they reach the destination. This could be a result of increased
deployment of open-loop applications that do not use congestion control. Presence
of applications that actually increase their sending rate when congestion is indicated
could make things worse. Also, there is a need to protect TCP flows that have large
RTTs or smaller windows from ones that have smaller RTTs or larger windows from
hogging the bandwidth. Thus, routers need to employ mechanims to allocate their
resource (bandwidth here) whether the end nodes implement congestion control or
not.

There are two ways by which the router can control its resources, viz., by em-

The journal model is IEEE Transactions on Automatic Control.



ploying different scheduling algorithms and by employing different buffer management
schemes. The former decides on which packet to send on the outgoing link , whereas
the latter decides on which packet has to be dropped during congestion. Routers
need both these to be able to provide different QoS to different flows. In this paper

we address the latter issue.

A. Related work

Various buffer management and scheduling schemes have been proposed to bring
about end-to-end congestion control. Almost all of the schemes talk about the router
dropping packets during congestion. This, of course depends on the buffer manage-
ment scheme that is built into the router. In order to be able to distinguish between
individual flows and give them different QoS by means of a scheduling algorithm
and/or buffer management schemes, the routers may need to incorporate per flow
state or partial state schemes. Routers in the core of the Internet are typically han-
dling millions of flows, and maintaining per flow state will not scale well. To be able
to provide some level of QoS and not maintain per flow state would mean designing
schemes that do not incur much overhead and maintain little state. This has led
to schemes that derive their buffer management mechanisms by maintaining partial
state information. This would maintain information only about those flows that are

consuming resources heavily.

1. Various buffer management schemes

The DropTail buffer management scheme drops packets when the buffer at the router
is full. Tt is simple to implement and does not require per flow state information.

The advantages are offset by the inherent weakness in that it is unable to distinguish



between flows, it therefore drops packets indiscriminately. Other associated problems
discussed in [2] are those of (a) lock out and (b) full queue. The former may result
in one or many flows monopolising the entire queue. The latter results in an increase
in the end-to-end delay and does not accomodate bursts of data.

RED (Random Early Detection)[3], is an active queue management scheme that
claims to solve the problems that were described earlier. This does not require any
per flow state information and it helps detect congestion early on. Its ability to mark
or drop a packet on detecting congestion ensures that it does not merely rely on the
sources to reduce their rates on indication of congestion. RED drops packets that
arrive at the router in a probabilistic manner and this probability grows with the
estimated average size of the queue(this does not represent the instantanoues queue
size). RED algorithm consists mainly of two parts, one involves the estimation of
average queue size using a simple exponentially weighted moving average and second,
the decision to drop the packet. Two parameters, minth and maxth (min threshold
and max threshold), play an important role. No packets will be dropped when the
calculated avergage queue size is below minth. When the queue size exceeds maxth,
all the packets are dropped and as it varies between minth and maxth, packets are
dropped with a probability that varies linearly from 0 to maxp.

By means of analytical models, the performance of RED has been studied [4],
these studes aim at bringing to light the benefits of an active queue management
technique. Some of the major findings include the fact that RED is accomodative
to bursty traffic, and it does so by increasing the drop rate of non bursty traffic.
Consecutive packet drops occur in RED also, as opposed to the claim that this was
eliminated [3]. It does reduce queueing delay but increases jitter of non-bursty traffic.

LQD (Longest Queue Drop)[5], another buffer management scheme requires per

flow state information. It stores the number of buffers assigned to each individual



flow and on congestion drops a packet from the flow that has the longest buffer
length/queue. Each flow is assigned a minimum buffer size b; from the buffer pool
of size 'B’. If a flow requires more buffers than b;, it is allocated the required buffers
provided the total current buffer size is less than 'B’. If the total current buffer size is
equal to 'B’, and the flow under consideration has its allocated buffer space less than
b;, a packet from another flow is dropped. The flow is chosen such that the difference
(gi - b;) is the maximum, where ¢; is the current buffer size of flow i. Another way to
choose a flow would be to pick one randomly such that g; is greater than b;. LQD is
based on the fact that if a flow uses more buffer space, then it is the one that uses
more than its fair share of bandwidth during congestion.

CHOKe [6], an active buffer management scheme based on RED attempts to
contain aggressive flows without maintaining any state information. It is based on
the assumption that the contents of the FIFO queue give an indication of which flows
are consuming resources heavily. It picks up a packet randomly from the queue when
a packet arrives at the router and compares the two. If both the packets belong to the
same flow, it drops both of them. If the packets do not match, the randomly drawn
packet is left intact and the arriving packet is admitted with the same probability
as in RED. CHOKe assumes that aggressive flows have more packets arriving at the
router, therefore they have more packets than other flows in the queue. The former
triggers more comparisons and the latter results in more matches than the other flows,
therefore the scheme would penalise the misbehaving flows.

SRED [7] is a buffer management scheme based on a mechanism that estimates
the number of active flows without collecting information on individual flows. This is
used to identify misbehaving flows(meaning those taking more than their fair share
of bandwidth). It stores information about misbehaving flows in a 'zombie’ list. It

compares the arriving packet with a randomly picked entry from the zombie list. If



they belong to the same flow, then a ’hit’ is declared and the ’count’ is incremented in
the corresponding entry in the zombie list. If a 'miss’ happens, the entry in the zombie
list is replaced with a probability 'p’. The assumption is that misbehaving flows are
more likely to get ’hits’ and therefore can be identified easily. Also, it estimates the
number of active flows in the system in order to do the above.

RQRD, Rate and Queue Controlled Random Drop[8] is another scheme developed
that has taken its distributed architecture based on core-stateless fair queueing [9].
In addition, it uses two drop precedences, one based on the queue size and the other
based on the rate information, to make decisions about dropping packets. RQRD
claims that it performs well in the presence of UDP and TCP traffic.

Aggregate Traffic Performance with Active Queue Management and Drop From
Tail [10] studies the performance of different active queue management schemes,
'RED’ and ’gentle RED’ on aggregate traffic at a congested router. The most im-
portant observation of the paper is that varying AQM parameters has little effect
on the metrics that were used. It brought to light the sensitivity of the same on
different traffic characteristics and has compared how droptail faired against any of

these schemes.

2. Comparison of the schemes

Mechanisms like DropTail and LQD do not detect congestion early on, they wait for
the buffers to get full and when they can’t accomodate any more, they indicate con-
gestion to the sources by dropping packets. RED and CHOKe detect congestion early
on and indicate the same to the sources. This helps reduce global synchronization
and also accomodates sudden bursts.

RED and CHOKe do not require maintainence of any state information. They

pick packets randomly for dropping/marking and this is proportional to the flow’s



arrival rate at the router. DropTail does not require any per flow state information
too and it drops packets indiscriminately. LQD, on the other hand requires per flow
state information to make decisions about which packet it can drop during congestion.

DropTail does not contain aggressive flows. It has been shown [2] that aggressive
flows can starve the other flows. RED, however claims that its random dropping and
marking policies are based on the flows arrival rate, so it may contain sources that
are aggressive. CHOKe follows a similar scheme as RED and CHOKe can contain
aggressive flows as long as there are more packets from those flows in the buffer at the
time of congestion. LQD can contain aggressive flows provided the number of flows
in the system does not exceed the buffer available at the router. Also, if the traffic is
bursty, it may not be able to penalise the aggressive flows unless it is backed by an
appropriate scheduling algorithm.

Most of these schemes evaluate the performance by measuring the ’fairness’ cri-
terion. Fairness is defined as follows:

If N = Number of flows and C = Capacity of the bottleneck link, the fair share

of each of the N’ flows, « is given by:
a=C/N. (1.1)

It is evident that for the above definition of fairness to be met, the system
must be able to identify the number of flows (instantaneous or otherwise) in the
network at any point in time. Based on the above, DropTail does not provide any
guarantees for fairness. LQD does provide fair sharing of bandwidth provided there
are enough buffers to hold all the flows in the system, and also if it incorporates a
scheme to alleviate the effects of multiple packet drops in a single wondow for TCP
flows. However, aggressive UDP flows can reduce the fairness provided by LQD[5].

RED and CHOKe are able to provide fair allocation of bandwidth among the TCP



flows and are not able to contain aggressive flows completely. Even among the TCP
flows, the achieved fairness of RED is not close to 1.1 or that of LQD[5].

The inherent RTT bias against TCP flows that have long RTTs is an important
issue that most buffer management schemes attempt at addressing. RED and CHOKe
do not reduce the effects of this bias. LQD does eliminate this to a certain extent.

DropTail does not eliminate this bias.

B. Shortcomings of the existing approaches

All of the schemes mentioned in the previous section fail to take into account t he
heterogenity of the Internet to the truest sense. The Internet typically cons ists of
two types of flows, the long-lived high rate flows and the short-lived f lows that do
not pump in as much data as the long-lived flows. It has been shown that [11], most
of the traffic in bytes in the Internet is generated by flows that are long lived and
that are high bandwidth in nature. But most of the flows in the Internet are the
short-lived type that do not generate as much traffic as the long-lived flows. These
short-lived flows may be the ON-OFF type that send in some data, stay idle for a
period and then send some more data.

Most schemes try to achieve fairness by estimating the number of flows that are
present in the system to be able to satisfy the definition of fairness given in reffair.
This is a difficult thing to do. With a great number of short lived flows in the system
that are idle for longer periods than active, it is hard to estimate the number of flows
accurately. This being the case, the fair share of bandwidth defined for each flow
does not hold. This is because there could be 'n’ short-lived flows that would require
only a few KB of the bandwidth, but a few long lived flows that would need more

bandwidth than their fair share. It would be inappropriate in this context to base



the evaluation criterion on fairness. Trying to achieve max-min fairness would not be
possible since the demand of the flows is not known apriori.

Ideally, one would want to keep track of the long-lived flows and drop packets
from these flows in situations of congestion, rather than drop packets from the short-
lived flows. The rationale behind this is that dropping packets from short-lived flows
may not reduce congestion that is being experienced as they are typically not the
cause for the congestion. As a result even if they reduce their rate, it would not
make a significant difference to the network status. More importantly these flows
may belong to HTTP traffic or Telnet like traffic that are sensitive to delays because
of ther interactive nature, so dropping a packet from these flows would not be a
wise thing, unless absolutely necessary. Whereas, dropping packets from flows that
are causing the congestion to happen, viz., the high bandwidth flows as seen by the
router, would make a great deal of difference. These high bandwidth flows may reduce
their rate when they notice congestion and therefore experience less drops or they may

not respond and continue experiencing high drops.

C. Organization

In chapter II, the necessity for a new scheme and also the proposed scheme are
discussed. It also gives the implementation details with the cost analysis. Chapter
IIT discusses the evaluation criteria and chapter IV evaluates the proposed scheme by
simulation results. Chapter V discusses future work and chapter VI concludes the

research.



CHAPTER II

THE PROPOSED SCHEME

A. Why another scheme?

The previous chapter discussed various merits and drawbacks of some of the existing
buffer management schemes. We propose a new scheme that aims at addressing
some of those issues. The new approach is not based on ’fairness’ like the traditional
schemes. The reasons for this have been discussed in the previous chapter.

There is an increasing deployment of video and other applications that do not
employ congestion control. Even though these applications constitute a small fraction
of the current network load, it is expected that these applications will continue to
increase their share of the network traffic. In this scheme, we propose able to protect
low bandwidth flows and also flows that respond to congestion.

To motivate our work, we will first show the ineffectiveness of some schemes
discussed in chapter I by means of simulations and show how the proposed scheme
fairs better. We will show that most of the schemes are ineffective when a large
number of non-responsive applications constitute the majority of the traffic.

We also propose a way to identify high bandwidth flows, which can be totally
decoupled from the underlying buffer management scheme in the routers. Meaning,
it can be employed irrespective of the kind of buffer management schemes used.

In addition, we also propose a method to couple the above with RED. Despite
the fact that [12] gives reasons why RED should not be deployed. We claim that
an appropriate mechanism for identifying high bandwidth flows will help RED make
wise decisions about dropping packets during congestion. This would improve the

performance of RED.
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Also, by means of the simulation results, we show that Droptail performs better
than RED in a heterogenous network. This is in accordance with the findings in [13].
We claim that the proposed scheme (a) recognises high bandwidth flows accu-
rately (b) penalises these by giving them more droprates than low bandwidth flows
and (c) protects short-lived flows. We will show through simulations that the claims

are true.

B. Overview of the scheme

We consider various types of flows in this scheme viz., long-term high bandwidth flows
(referred to as high bandwidth flows), short-lived flows, and low bandwidth flows.
Flows that pump data at a rate that is greater than acceptable to the network (this
is typically decided by the ISP) over a period of time are long-term high bandwidth
flows. Those that pump bursts of data over a short period and stay idle for some
period and continue this process are short-lived flows. The others are classified as
low bandwidth flows simply because they do not violate the rate limit. Among the
long-term high bandwidth flows we identify two classes, one that reduces its rate and
starts sending data at a lower rate when congestion is indicated. The second class
of applications are non-responsive to congestion. TCP flows are typical examples
of the long-term high bandwidth flows that respond to congestion. UDP sources
pumping data at high rates with no congestion control mechanism built into them
can be classified as long-term high bandwidth flows that do not respond to congestion.
HTTP transfers over the Internet can be classified as short-lived flows. UDP sources
that send at a low rate and telnet type interactive applications can be classified as
low bandwidth flows.

We propose a scheme that can be used by a router to distinguish high bandwidth
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flows, short-lived flows, those that respond to congestion and those that do not. We
exploit this to recognise long-term high bandwidth flows and provide higher droprates
for them when compared to short-lived flows and low bandwidth flows. Also, our
scheme can distinguish between high bandwidth flows that respond to congestion
and those that do not, to be able to give them different drop rates. By doing so, we
propose to be able to give short-lived flows and responsive flows, higher throughput.
There are two components involved in this process (a) identifying high bandwidth
flows accurately (b) penalising the identified high bandwidth nin-responsive flows

aggressively.

1. Identifying high bandwidth flows

Packets from high bandwidth flows will be seen at the router more often than those
from short-lived flows or even other low bandwidth flows. For eg., a flow that is
pumping data at the rate of 4Mbps with 1000 byte packet size, would roughly pump
1000 packets per second. This means that the router will see 1000 packets of this
flow every second. While, a flow that is pumping at the rate of 1Mbps will send
125 packets per second. Short-lived flows, that are characterized by HTTP transfers
are typically the ON-OFF type, send data intermittently. Thus, packets from such
flows are not seen at a constant rate at the router. When they are seen, the data is
much less than that of high bandwidth flows. So, by observing the arrival rates of
flows for a period of time, the router can distinguish between high bandwidth and
low bandwidth flows.

In order to identify high bandwidth flows at the router, an LRU (Least Recently
Used) cache is employed. This cache is of a fixed pre-dertermined size, ’S’. In an LRU
cache every new entry is placed at the topmost (front) position in the cache. The

entry that was least recently used is at the bottom. This is chosen to be replaced
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when a new entry has to be added and there is not enough space in the cache. This
mechanism ensures that the recently used entries are present in the cache and in
a position closer to the top. The objective is to store state information for only
long-term high bandwidth flows in the LRU cache.

The router keeps track of the flow and the amount of packets it has pumped, in
its LRU cache. Every time the router sees a packet, it searches the cache to check
if an entry for that flow has been made in the cache. If there is an entry for that
flow, we say that a hit for that flow has occured. If there is no entry for that flow
we say that a miss for that flow has occured. If a miss occurs, it adds this entry
(consisting of the flow id and the packet count) into the cache if there is space in the
cache. If there is no space in the cache, it replaces the entry for the flow whose packet
the router least recently saw (the bottom most in the cache) with a probability 'p’.
It adds this entry in the topmost position in the cache, making it the most recently
seen flow, and also initialises its packet count. If a hit occurs, the router updates the
position of the entry in the cache (brings it to the topmost position) and updates the
packet count.

Everytime a hit occurs, or everytime a miss occurs and a flow is replaced, the
flow under consideration is brought to the topmost position in the cache so that it is
replaced with the least probability when compared to the other entries in the cache.
The reason being, this was the most recently seen flow, and the others in the cache
were seen some period of time earlier than this one. Therefore, if we need space in
the cache, the element to be replaced should be one of the older flows that are lower
in the cache. So, in this way the cache automatically marks the age of the entries in
the cache. Ultimately, this topmost flow would be pushed to the bottom of the cache
if the router does not see its packets often enough. This works well with our scheme

wherein we only want to maintain state for high bandwidth flows.
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When there is no space in the LRU cache, the oldest flow is replaced only with
a certain probability to make room for the new flow. This is because, we only want
to keep track of the actual high bandwidth flows in the LRU. If an entry were to be
replaced every time a new flow arrived at the router, some of the high bandwidth
flows could end up being replaced by short-term or low bandwidth flows. This would
lead to entries in the cache not being the ones corresponding to the high bandwidth
flows. For a flow to have an entry in the cache, it has to be seen by the router at
least a certain number of times before it can be classified as a high bandwidth flow
and put in the cache. This eliminates recording short-lived, low bandiwidth flows in
the cache and saves space for flows that are actually high bandwidth in nature. With
a cache of limited size, a flow has to arrive at the router frequently enough to remain
in the cache. Short-term flows or low bandwidth flows are likely to be replaced by
other flows fairly soon. These flows do not pump packets fast enough to keep their
cache entries at the top of the LRU list and hence become candidates for replacement.
High bandwidth flows are expected to retain their entries in the LRU cache for long
periods of time.

However, one can’t classify a flow as high bandwidth by merely checking if it is
present in the cache. For instance, at a particular router, one may categorize flows
that pump data greater than 3Mb as high bandwidth flows. But a flow that sends
data at a constant rate of 1Mb may also have an entry in the cache. Therefore
some mechanism must be incorporated by means of which the router can discern the
difference between a high bandwidth flow and a flow that is pumping in data at a
constant low rate. A parameter called ’threshold’ is employed for doing this. At
any instant, flows that have sent data greater than the ’threshold’ are considered
high bandwidth flows. Flows that have not sent as much data are considered low

bandwidth flows despite the fact that they are present in the cache. Short-term
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flows and low bandwidth flows are likely to be replaced from the cache before they
accumulate a count of ’threshold’. The parameter 'threshold’ allows us to account for
the burstiness of flows.

The following experiment shows that the scheme works and does indeed identify
the high bandwidth flows.

A setup with 300 short-lived HTTP flows, 20 long-lived TCP flows (which depict
at times, high bandwidth responsive flows) and 20 long-lived UDP flows (of which
some depict high bandwidth unresponsive flows) was used. A cache size of 30 and
probability of 1/40 was used, and the flows were allowed to start and stop at random
times. Figures 1 and 2 show that the (1) LRU cache is indeed able to capture flows
that are high bandwidth in nature and those that pump data at a constant rate, (2)
that the cache is able to take the dynamic nature of flows starting and stopping at
various periods into account and record only data about the appropriate flows and
(3) responsive flows stay for shorter periods in the cache.

These graphs represent the state of the cache at various intervals between 0 and
500 seconds during which UDP flows pumped data for random periods. The x-axis
for the UDP graphs represents UDP rate in Mb and for the TCP graphs, the flow
number. The y-axis in represents the time the flow stayed in the cache (in seconds).
It is clear from these that when a UDP flow stops sending data, it gets out of the
cache making room for other flows, and when it starts sending data, it gets captured
in the cache again. For example, in the time period between 250 to 300 seconds,
there were no UDP flows sending data. The graphs at this time show that the cache
has state for only TCP flows. Once the UDP flows start sending data again, after
300th second, they start occupying space in the cache. This results in most of the
TCP flows being replaced. Also, it is evident from these graphs that a UDP flow

that pumps data at a high rate occupies the cache for a longer period than a low
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bandwidth flow, or even a TCP flow.

2. Cache size

The size of the LRU cache plays a significant role in being able to identify high
bandwidth flows. If the cache size is smaller than the number of high bandwidth
flows, the router would not be able to identify all the high bandwidth flows. As
a result, some may escape punishment. These, would appear as high bandwidth
flows at routers downstream, and would eventually be penalized. If the cache size is
large enough to identify all the high bandwidth flows, they would be punished during
congestion. If the cache size is larger than the number of high and low bandwidth
flows together, all of them would remain in the cache. By choosing a proper function

to update the ’count’ parameter, high bandwidth flows could be identified accurately.

3. Penalizing high bandwidth flows

After having identified the high bandwidth flows at the router, their drop probabilities
are increased. The parameter 'threshold’ is used to increase the drop probability of
these flows. ’'threshold’ is a parameter that gives a measure of how many packets a
flow can send before it is considered a high bandwidth flow. For instance, a flow may
get into the cache on account of sending data at a high rate and/or at a constant
rate. If we want to start penalising flows that are greater than 1Mb, we can assume
‘threshold’ to be 125, based on the fact that each packet is 1000 bytes and the 'count’
is incremented each time the router sees a packet of the flow. Thus, once the flows
accumulate a count greater than this and remain in the cache, they will be dropped at
a higher rate until they drop the rate sufficiently enough to be thrown out of the cache.
By doing this, we are able to increase the drop probability of high bandwidth flows

compared to the other flows. This ’policy enforcement’ mechanism can be coupled
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drop probability for high bandwidth flows

drop probability for low bandwidth flows (same asin RED)






A new packet arrives at the router

Yes 1 Update ' count’

Isthe flow in cache?

- 2.Update position
of flow in cache

1. Record the flowid of this flow
= inthe cache, in the topmost

Yes

\//

|s there space in cache?

position.

2. Initialise 'count’ to 1.

1. Admit this flow into the cache
with a probability 'p’, removing
the least recently seen flow.

2. If flow is admitted into the cache

initialise’count’ to 1.




Isthe flow in cache?

No

Isflows
count > threshold?

plru = f(count,threshold)

pdrop = f(plru,pred)

No

pdrop = pred







When the queue length is between minth and maxth do the following

if (flow is in the cache )

begin
if ( flow’s count > = ‘threshold’ )

plru = count / threshold

pdrop = pred * plru

end

else
pdrop = pred

drop the packet under consideration with a probability pdrop
use the following function to update ‘count’ for each flow
if (itis a new entry )

count = 1

else
count = count + 1
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Let 't = rateatwhichtheflowispumping data.
'delta’ = rate above which scheme 2 might start punishing flows.

delta

Inthiscase, t< delta, meaning the flow is pumping data at a higher rate than acceptable.
The scheme therefore has to accumulate ' count” for such flows more aggressively than the others
in order that they be punished more aggressively.

delta

Inthiscase, t > delta, meaning the flow is pumping at a rate that is acceptable and isa low
bandwidth flow. The scheme should protect this flow and not give it drop rates greater than
what it would observe in ordinary RED.



On arrival of a packet,

if ( cache lookup = ‘hit’)

begin
count = count + 2 — (currenttime — flow->timestamp)/ 6
flow->timestamp = currenttime

end

else

count = 1
flow->timestamp = currenttime
end
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TCP Throughput at R2 and R3
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TCP Throughput
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