
AN ADAPTIVE CONTROLLER INSPIRED BY RECENTRESULTS ON LEARNING FROM EXPERTSP. R. KUMARUNIVERSITY OF ILLINOISDEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERINGAND THE COORDINATED SCIENCE LAB1308 WEST MAIN STREETURBANA, IL 61801, USA�Abstract. In computational learning theory there have been some interesting de-velopments recently on the problem of \learning from experts."In this paper, we \adapt" the learning problem to an adaptive control formulation.What results is an adaptive controller which is reminiscent of a certainty equivalencescheme using the \posterior mean" for the parameter estimator. We show that thisscheme can be analyzed in a somewhat novel way, for ideal linear systems. The analysistechniques may be of some interest to researchers in the theory of adaptive control.Key words. Adaptive Control, Learning TheoryAMS(MOS) subject classi�cations.1. Introduction. Recently, Littlestone and Warmuth [] and Cesa-Bianchi, et al. [] have addressed the interesting problem of learning fromexperts.Here we show how these results may be \adapted" to an adaptivecontrol framework. Brie
y, we regard each parameter vector � as giving an\expert prediction" of the next value of the output. Over time, we acquiremore con�dence in some \experts" and less in others. We adopt the learningscheme from [] and [] to fashion a parameter estimator. Inspired by thetechniques there, we also provide a somewhat novel analysis of our adaptivecontroller, which may be of interest in its own right to those interested inthe theory of adaptive control, e.g., techniques to establish stability andother asymptotic properties.2. System Description. Consider a standard \ideal" linear system,y(t) = �T (t� 1)��where�(t� 1) := (y(t � 1); : : : ; y(t � p); u(t� 1); : : : ; u(t� p))T ;� This research was conducted while the author was visiting the IMA in Win-ter/Spring 1993. The author wishes to express his appreciation for the extremely warmhospitality in an extremely cold climate. The research reported here was supported inpart by the U.S. Army Research O�ce under Contract No. DAAL-03-91-G-0182, by theNational Science Foundation under Grant No. ECS-92-16487, and by the Joint ServicesElectronics Program under Contract No. N00014-90-J1270.1



2 P. R. Kumarand �� := (a1; : : : ; ap; b1; : : : ; bp)T :Here u(t) and y(t) are, respectively, the input and output to the system.We assume that �� is in the interior of �, a closed sphere of unit volume,centered at the origin. (These assumptions can be generalized somewhat).We also suppose that the system is of strictly minimum phase.Except for these assumptions, we assume that the parameter vector ��is unknown. Our goal is to adaptively control the system in such a waythat limt!1 y(t) = 0;while u(t) is kept bounded.3. A New Adaptive Controller. Let n(t�1) = 1+2maxf1; sup� k�kgk�(t�1)k be a \normalization" signal. Note thatk�(t� 1)kn(t� 1) � 12 and jy(t)jn(t� 1) � 12 :Let 0 < � < 1. Setq(0; �) � 1; for all � 2 �;(3.1)and recursively de�ne, q(t; �) = F (t)q(t� 1; �);where F (t) only needs to satisfy(1� �) jy(t)��T (t�1)�jn(t�1) � F (t) � 1� � jy(t) � �T (t� 1)�jn(t� 1) :(3.2)(We note that F (t) is allowed to depend on past measurements, and ateach t should be chosen to satisfy the bounds given above). Intuitively, onecan think of q(t; �) as our \con�dence," at time t, that the value of �� is�. Note, however, that q(t; �) is \unnormalized" since R� q(t; �)d � need notbe 1; hence q(t; �) can be regarded as an \unnormalized" density function.Two examples of con�dence updating schemes which satisfy (3.2) aregiven below.Example 1. Consider the system,y(t) = �T (t � 1)�� +w(t);



ADAPTIVE CONTROL VIA LEARNING FROM EXPERTS 3where �� � U (�), i.e., uniformly distributed over �. The term w(t) repre-sents an additive noise. Assume that fw(t)g is a sequence of independentrandom variables with density,pw(t)(w) = 1� � jwjn(t� 1) ; for �1 +p1� �=n� � wn(t� 1) � 1�p1� �=n� ;= 0; otherwise:Then the unnormalized posterior density for �� is given by,q(t; �) = q(t � 1; �)� �q(t� 1; �) jy(t) � �T (t� 1)�jn(t � 1) :This is the expression for the upper bound in (3.2). Thus, the \con�dence"q(t; �) has a Bayesian interpretation. 2Example 2. Consider the same system as in Example 1, except thatpw(t)(w) = n(t � 1)(1� �) jwjn(t�1)�2 ln(1� �) :Then q(t; �) = q(t � 1; �)(1� �) jy(t)��T (t�1)�jn(t�1)is the recursion for the unnormalized posterior density. It corresponds tothe lower bound in (3.2). 2Let us de�ne �̂(t) := R� �q(t; �)d �R� q(t; �)d � :(3.3)It can be regarded as the \mean value" of our con�dence distribution.We will adopt a \certainty equivalent" approach, and apply a controlu(t) which results in �T (t)�̂(t) = 0:(3.4)(For simplicity, we suppose that this is always feasible, i.e., b̂1(t) 6= 0). Thiscorresponds to a deadbeat control.4. The Analysis. We will �rst develop some properties of the pa-rameter estimator, without invoking the form of the control applied.De�ne s(t) := Z� q(t; �)d �:This is the normalizing factor in (3.3). Note thats(0) � 1from (3.1), since � has unit volume.



4 P. R. KumarLemma 1. TXt=1 jy(t) � �T (t� 1)�̂(t� 1)jn(t � 1) � � 1� ln s(T ):Proof. From (3.2),q(t; �) � q(t � 1; �) �1� � jy(t) � �T (t� 1)�jn(t � 1) � :Hences(t) = Z� q(t; �)d �� Z� �1� � jy(t) � �T (t � 1)�jn(t� 1) � q(t� 1; �)d �= s(t � 1)� Z� � jy(t)� �T (t� 1)�jn(t � 1) q(t� 1; �)d �� s(t � 1)� ����Z� �(y(t) � �T (t � 1))n(t� 1) q(t � 1; �)d �����= s(t � 1)� ������ y(t)n(t� 1)s(t � 1)� ��T (t � 1)�̂(t� 1)n(t� 1) s(t � 1)����� (from (3:3))= s(t � 1)� � s(t � 1)n(t� 1) ���y(t) � �T (t � 1)�̂(t� 1)���= "1� � jy(t) � �T (t� 1)�̂(t � 1)jn(t� 1) # s(t � 1):So, s(T ) � s(0) TYt=1"1� � jy(t)� �T (t� 1)�̂(t � 1)jn(t� 1) # :Taking logarithms, we obtainln s(0)s(T ) � TXt=1 � ln"1� � jy(t) � �T (t� 1)�̂(t� 1)jn(t� 1) # :Noting s(0) = 1, and using ln(1� x) � �x, yields the desired result. 2Lemma 2. Let S(r; ��) denote a small closed sphere of radius r centeredat ��. Assume S(r; ��) � �. Then, for some constant c,TXt=1 jy(t) � �T (t � 1)�̂(t� 1)jn(t � 1)



ADAPTIVE CONTROL VIA LEARNING FROM EXPERTS 5� 1� "� ln(cr2p) + r ln� 11� �� TXt=1 k�(t� 1)kn(t� 1)+ ln� 11� �� TXt=1 jy(t) � �T (t � 1)��jn(t � 1) # :Proof. Clearly,max�2S(r;��) TXt=1 jy(t) � �T (t� 1)�jn(t � 1) � TXt=1 jy(t) � �T (t � 1)��jn(t � 1) + r TXt=1 k�(t� 1)kn(t � 1) :Now,s(T ) = Z� q(T; �)d �� ZS(r;��) q(T; �)d �� ZS(r;��) q(0; �)(1� �)PTt=1 jy(t)��T (t�1)�jn(t�1) d � (from (3.2))� cr2p(1� �)[PTt=1 jy(t)��T (t�1)��jn(t�1) +rPTt=1 k�(t�1)kn(t�1) ]:Above, cr2p is the volume of S(r; ��). Taking logarithms and using Lemma 1yields the result. 2Clearly, �� 2 argmin�PTt=1 jy(t)��T (t�1)�jn(t�1) ; in factPTt=1 jy(t)��T (t�1)��jn(t�1) =0. Hence, by choosing �� = ��, for small enough r,TXt=1 jy(t) � �T (t� 1)�̂(t� 1)jn(t� 1)� 1� "� ln(cr2p) + r ln� 11� �� TXt=1 k�(t� 1)kn(t� 1) #(4.1) = 1� "� ln c � 2p ln r + r ln� 11� �� TXt=1 k�(t� 1)kn(t� 1) # :Now note that for r = 2px ,�2p ln r + rx = 2p+ 2p ln� x2p� :Hence, with x = ln� 11���PTt=1 k�(t�1)kn(t�1) , we obtain from (4.1),TXt=1 jy(t) � �T (t� 1)�̂(t� 1)jn(t� 1) � c1 + c2 ln TXt=1 k�(t� 1)kn(t� 1) :(4.2)



6 P. R. Kumar(Above, we are only treating the case P1t=1 k�(t�1)kn(t�1) = +1, for otherwise�(t)! 0, and we are done).From (4.2), by using the strict minimum phase property of the system,and the Key Technical Lemma from Goodwin and Sin [], it is easy toconclude that the adaptive controller gives y(t) ! 0, while keeping signalsbounded.5. Concluding Remarks. We have provided a somewhat novel methodof analysis, for an adaptive controller that is not too di�erent from tradi-tional adaptive controllers. This method of analysis may be of interest toothers. REFERENCES[] Niccolo Cesa-Bianchi, Yoav Freud, David P. Helmbold, David Haussler,Robert E. Schapire and Manfred K. Warmuth, How to use expert advice,Technical report, Universita di Milano, UC Santa Cruz and AT&T Bell Labs,1992.[] G. C. Goodwin and K. S. Sin, Adaptive Filtering, Prediction and Control.Prentice-Hall, Englewood Cli�s, NJ, 1984.[] N. Littlestone and Manfred K. Warmuth, Weighted majority learning, Tech-nical Report UCSC-CRL-91-28, University of California, Santa Cruz, SantaCruz, CA 95064, October 1992. Baskin Center for Computer Engineering andInformation Sciences.


