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Safety requirements and the ability to tolerate changes make service continuity crucial for 
networked control systems. The authors describe how their middleware for networked control, 
Etherware, addresses these issues.

The ability to tolerate change is a fundamental quality of a sustainable dynamic system. A 
system's ability to respond to change in its operating conditions determines, to a large extent, its 
useful lifetime. However, it's impractical to anticipate all changes before you deploy a system. 
Instead, systems are often designed to be able to evolve and adapt dynamically. Software 
systems are particularly malleable because of the "program as data" concept that the von 
Neumann architecture introduced.1 Indeed, developers have created systems software such as 
operating systems and middleware to manage application software. This is the basis of most 
dynamically evolvable software systems today.

Our focus is on networked control systems comprising sensors, actuators, and computers that 
coordinate over a network to manage distributed real-time systems. Because these systems 
directly interact with the real world, they're subject to drastic and often unpredictable changes. 
Hence, maintaining such systems' operational integrity requires containing the changes' effects. 
Further, developers usually build these systems as networks of components that interact by 
providing and consuming services. Therefore, service continuity is a basic requirement that 

1
IEEE Distributed Systems Online  September 2004 



must be addressed for the viability of such applications.

In this article, we first develop the notion of operational integrity for networked control and 
identify the main challenges of maintaining it. Second, we identify several middleware issues 
involved in operational integrity, consider their influence on the design of Etherware our 
middleware for networked control and describe how Etherware supports service continuity. A 
key feature of Etherware is the ability to maintain communication channels during component 
restarts and upgrades.

Operational integrity in networked control

Networked control software interacts with a distributed real-time system, usually called a plant. 
Sensors provide feedback about the plant behavior. Computers running control programs use 
this sensor feedback to generate actuator commands that accomplish specified goals. Actuators 
implement these commands to control the plant. Sensors and actuators constitute the interface 
between the software and the real world (see Figure 1). Also, the controller is typically 
implemented as a set of software components operating over a network of computers.

Figure 1. Schematic of a networked control system. 
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The goals that the controller receives specify the objectives to be achieved during plant 
operation. An important part of these goals is a set of safety criteria that ensures that the plant 
operates in a "safe" region. For example, in a traffic control system, a safety criterion would be 
to maintain a given distance between any two cars, ensuring against collisions. In general, 
safety criteria depend on specific applications and are usually part of the system specification. 
In this context, operational integrity is the property that the system always meets its safety 
criteria while still maintaining its operational capability, which is its ability to meet specified 
goals.

Operational networked control systems are subject to many changes, classified as voluntary or 
involuntary. Voluntary changes such as component upgrades and configuration changes are 
intentionally introduced by a system operator and might affect one or more of the following:

 Syntax. An upgraded component might require syntactic changes such as 
additional functions or parameters in a service interface. For example, an 
upgraded controller might require additional information in the updates it gets 
from the sensors.

 Semantics. Changes in operating conditions or upgrades might trigger changes 
in operational semantics. For example, on detecting a safety violation between two 
coupled subsystems, the respective controller components might communicate 
directly to avoid it. You might need to upgrade such fault avoidance algorithms as 
the system evolves.

 Communication. You might need to add components to established 
communication channels at runtime. For example, if updates from a sensor are too 
noisy, then you might need to add a filter to reduce this noise. Components might 
also want to change communication channels' quality-of-service parameters. For 
example, components in wireless networks might want to trade reliability for 
lower delay, as we've shown in earlier work.2 

 Timing. Changes in operating conditions could cause related changes in timing 
requirements. For example, the controller might need updates at a higher 
frequency when approaching critical conditions.

 Location. You can migrate components to better use resources. For example, if 
feedback from a sensor is a lot more frequent than any other communication 
involving a controller component, you can migrate the component to the same 
node as the sensor to reduce network traffic.
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Environmental events beyond operator control cause involuntary changes, such as

 Passive failures. These include component crashes owing to exceptions, node 
faults, and failure in communication links.

 Active failures. These are usually caused by misconfigured or erroneous 
components. Also, system managers might make mistakes during system 
reconfiguration. Malicious components cause Byzantine failures, which are 
usually the hardest to cope with.

To maintain operational integrity, you must handle these changes dynamically and minimize 
their impact on the system's operational capability. Notably, active and Byzantine failures 
require semantic information and must be handled by application-specific mechanisms.

Maintaining service continuity

A system designer typically creates middleware-based systems as a set of coordinating 
components that interact by providing and consuming services. For networked control systems 
in particular, some of these services might be critical for a component's operation. For example, 
the controllers in Figure 1 depend on getting feedback from the sensors. Controls are usually 
discrete and calibration is imperfect. Therefore, any changes in this feedback service could 
result in serious faults in controller operation. Hence, the feedback service's continuity is 
imperative to the controller's operation. Similarly, the actuators depend on receiving controls 
from the controller.

Networked control systems have fairly strict safety requirements, so components must respond 
to changes as soon as possible. For example, on detecting a safety violation, a controller 
component might not be able to wait for an acknowledgment from another remote component 
before it decides to take a safe action. On a wireless channel in particular, delays can be fairly 
large because of interference and fluctuating channel conditions. To maintain operational 
integrity, components must be able to operate asynchronously.

Another important consideration is the presence of dependencies in push-based communication 
channels. For example, a controller can't wait for updates from the sensor before sending 
controls to the actuator. In particular, updates might be delayed or lost because of 
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communication failures in a wireless link. Synchronous communication would require such 
components to be multithreaded or to use a fairly complex design involving poller objects for 
each sensor. Asynchronous operation, on the other hand, eliminates this source of complexity. 
Based on these considerations, we've developed Etherware as an asynchronous message-based 
middleware.

Key components might terminate owing to voluntary upgrades or involuntary failures. To 
maintain operational integrity, however, components must be restarted and operational within 
application-specified deadlines. For example, if a controller is restarted, it should know the 
plant's current state, as this information might not be entirely available from sensor feedback. 
Checkpointing is a common technique for addressing this requirement. Necessary state is 
checkpointed so components can be restarted appropriately. To support this, we've closely 
integrated checkpointing with Etherware design and provided it as a basic service.

Components typically maintain several communication channels with other components. For 
service continuity, restarting or updating such components shouldn't require channels to be 
reestablished. Consequently, Etherware also supports maintaining communication channels 
across these changes. In particular, you can save identifiers for communication channels as part 
of checkpointed state. This lets restarted or upgraded components continue using previously 
established channels. It also provides communication continuity to other components during 
these changes.

The need to support efficient components restarts has motivated another basic design choice in 
Etherware. A single-kernel process manages all components on a given node. Components can 
have separate threads if necessary. Furthermore, services the middleware provides also must be 
easily restartable and upgradable. Also, invariant aspects of the middleware that can't be 
changed dynamically must be minimized for maximum flexibility. This motivated us to adopt a 
microkernel-based design for Etherware.3 This philosophy of flexibility has also resulted in the 
development of a bare minimum, functional interface for components to interact with the 
middleware. For flexibility and uniformity, all interaction with middleware services is message 
based.

Etherware

Etherware is messaging middleware implemented in Java for portability. In an Etherware-based 
application, components communicate by exchanging messages, which are XML documents.4 
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Etherware provides a hierarchy of Java classes that application components can use to 
manipulate these documents. The hierarchy's root is the Message class that provides various 
primitives to manipulate the underlying XML document. Application-defined messages are 
required to be Message subclasses.

Figure 2a shows a generic component's interactions in an Etherware-based network control 
application. Components participate in control hierarchies such as between a supervisor and a 
controller (see Figure 2a) and in data flows, such as from sensors to controllers. We based the 
design in Figure 2a on design patterns that include5 

 Memento. Support for restarts and upgrades requires the ability to capture 
component state. The Memento pattern addresses this, wherein component state 
can be checkpointed and restored on reinitialization.

 Strategy. Service continuity requires the ability to replace components without 
disrupting service. In particular, if the functional interface the system uses to 
communicate with the component is invariant, Etherware can replace components 
dynamically. In this case, it uses the Strategy pattern along with the Memento 
pattern.

 Facade. Interaction with various services in middleware usually requires a 
component to invoke different subsystems. This may lead to unnecessary 
dependencies between the component and middleware subsystems. Using the 
Facade pattern to provide a uniform middleware service interface for the 
components eliminates this.
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Figure 2. An Etherware programming model: (a) programming model of an Etherware 
component and (b) filters for MessageStreams. 

Etherware components can be active or passive. Passive components don't have active threads 
of control. They only respond to incoming messages by processing them appropriately and 
generating resulting messages, if any. Active components, on the other hand, can have one or 
more active threads of control. They can generate messages based on activities in their 
individual threads of control.

Message delivery in distributed systems face two basic problems: discovering and identifying 
destination components. Associating profiles to addressable components solves the discovery 
problem. Each component that must be addressed registers a profile with the middleware. We 
solve the identification problem in Etherware by associating a globally unique ID, called a 
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binding, to each component.

A profile is an XML-based description of a service a component provides. For example, a 
vision sensor profile could specify that the sensor is a grayscale camera covering the region 
between the points (0,0) and (100,50) in an appropriate coordinate space. Suppose a controller 
is only interested in the location between coordinates (25,37) and (45,52). It could use this 
information to connect to a relevant vision sensor, using an appropriately defined profile 
request. Etherware would then match this profile with the sensor's profile and forward the 
connection request to it. In general, we've defined suitable matching rules to match profiles.

Incorporating the features we've mentioned, all messages in Etherware are XML documents and 
have three constituent XML tags. Profile identifies the message's recipient and can be a service 
description (as mentioned) or a component's globally unique binding. Content represents the 
message's contents and contains all application-specific information. A time stamp is associated 
with each message. As a message is transferred from one node to another, the time stamp 
automatically translates to the destination's local time.

By default, messages are delivered reliably and in order. However, there might be streams of 
messages that must be delivered using other specifications. For example, a controller might 
tolerate a few lost sensor updates for lower delays and need to trade some reliability for lower 
delays. To identify and manipulate a stream of messages as a separate entity, Etherware 
introduces the notion of a MessageStream. A component can open a MessageStream to another 
component and send messages through it. MessageStreams have settings that you can use to 
specify how messages are delivered through them.

Changes in operating conditions might also require modifying messages in a MessageStream. 
For example, updates from the vision sensor could get noisy because of bad lighting conditions. 
We should be able to filter out this noise without having to modify the sensor or the controller. 
Etherware supports this by adding Filters to MessageStreams dynamically. Figure 2b shows the 
effective configuration after adding a Kalman filter to the MessageStream between a sensor and 
a controller. You can also add filters to intercept all messages sent to or received by a 
component.

Etherware's architecture is based on the microkernel concept (see Figure 3). The kernel 
manages all components in a single process and represents the minimum invariant in Etherware. 
In the current implementation, we have one Etherware process per node. The kernel's basic 
function is to deliver messages between its (local) components. It also exposes a service 
interface, which can be used to manipulate the components it manages. The kernel has a 
scheduler that's responsible for scheduling all messages and threads and can be replaced 
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dynamically.

Figure 3. An Etherware process configuration. 

As Figure 3 illustrates, each component is encapsulated in its own shell. A shell presents a 
facade to the component and provides a uniform interface for it to interact with the rest of the 
system. Shells also encapsulate component-specific information, such as MessageStream 
configuration, and handle activities involved in component restart, upgrade, and migration.

Service components provide all other functionality in Etherware. The following basic services 
are used during Etherware's normal operation:

 ProfilerRegistry. This service is used to register and look up components' 
profiles. It's equivalent to a name service.

 NetworkMessenger. The NetworkMessenger encapsulates all communication 
with remote nodes over the network, including details such as IP addresses, ports, 
and transport layer protocols. The kernel forwards all messages addressed to 
remote components to the NetworkMessenger. This is an active component with 
separate threads to receive components from remote nodes.

 NetworkTimeService. This service is used to translate time stamps of messages 
as they're transmitted from one node to another. To implement this, the 
NetworkTimeService is added as a filter for all messages that are sent to and 
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received from the NetworkMessenger. Time translation is based on computing 
clock offsets using the Control Time Protocol.6 

 Ticker. Mostly used by passive components for periodic activations, the Ticker 
can also send one-time alarm messages. It's also an active component.

Because Etherware has these services implemented as components, it can also restart or update 
them dynamically.

Service continuity using Etherware

Etherware supports service continuity during most of the changes we've listed in the following 
ways:

 Restarts, upgrades, and migration. Externalization of the component state is 
supported using the Memento pattern in Etherware. Before Etherware restarts, 
upgrades, or migrates a component, it captures the component's state as a 
memento. It then uses the memento to initialize the new component. This also lets 
the component bring the plant to a safe state before any changes.

 Syntax changes. Components interact by exchanging messages directly with 
their shells (see Figure 2a). This involves a simple and uniform functional 
interface, which isn't expected to change during most operation. So, the key 
sources of syntactic change during component upgrade are the formats of 
messages it consumes and produces. However, because message formats are XML 
document specifications, Etherware easily supports format changes and backward 
compatibility.

 Semantic changes. Support for explicitly stating interface semantics of 
components promotes service continuity during semantic changes. A formal 
specification of components' application semantics can further enhance this 
notion.

 Communication changes. Inserting filters, upgrading based on checkpoints, and 
migrating components support changes in connection topologies. The system can 
intercept messages by defining appropriate filters. The addition and deletion of 
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filters doesn't require the messages' sender or receiver to be involved.

 Timing changes. Using MessageStreams supports changes in message delivery's 
timing behavior. However, Etherware doesn't yet support hard real-time deadlines.

 Location changes. The provision for globally unique bindings of components 
supports location independence. Migrating components is supported as a basic 
primitive.

 Component failures. Checkpointing and restart mechanisms in shells support 
passive failures such as component exceptions, as we mentioned earlier. A node 
failure, on the other hand, triggers appropriate exception messages informing 
remote components connected to components on the failed node. The component 
can then use these exceptions to handle node failures in application code. For 
example, all Etherware services we described in the " Etherware" section are 
designed to tolerate node restarts.

 Other failures. Active and Byzantine failures involve application-specific 
mechanisms, and we haven't yet provided comprehensive support for such 
changes in Etherware.

We've tested the performance of these mechanisms through experiments on a prototype traffic-
control application.7 

Related research

Fault-tolerant CORBA is the primary Object Management Group specification that addresses 
fault tolerance in distributed systems.8 The key mechanism in FT-CORBA is supporting fault 
tolerance through redundancy of entities. However, a chief problem with this model is that, 
because replicas execute the same algorithms and have the same inputs, they'll have similar 
failures owing to application errors. Thus, safe component restarts are also necessary to support 
such failures. Researchers have also considered other problems that future work must address 
before we can use FT-CORBA for distributed real-time systems.9 

Software frameworks and middleware for networked control in general are areas of active 
research. Open Control Platform10 is a Real-Time CORBA -based middleware11 for 
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reconfigurable control systems. Although OCP supports service continuity during component 
and service reconfiguration, it doesn't provide mechanisms to tolerate faults in application 
software. Detailed surveys address related efforts.12,13 

Conclusion

Etherware is the basis for much ongoing and future research. For example, Simplex is an 
elegant architecture that supports safe, dynamic upgrades of control software.14 However, 
component restarts or upgrades still require the application to reestablish communication 
channels, and this might affect operational integrity. Because Etherware can support this, we're 
working to incorporate the Simplex architecture into it. We're also developing an interface 
description language to support message type specification and component interaction 
semantics in Etherware.

We've also implemented a traffic control testbed using Etherware.7 On the basis of state 
estimation and buffering techniques,2 we were able to develop the system with soft real-time 
control. However, Etherware doesn't yet support hard real-time deadlines, so incorporating this 
is another aspect of our current research.
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