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Abstract

In recent years there has been significant and increasing interest in
ad hoc wireless networks. The design, analysis and deployment of
such wireless networks necessitate a fundamental understanding of
how much information transfer they can support, as well as what the
appropriate architectures and protocols are for operating them. This
monograph addresses these questions by presenting various models and
results that quantify the information transport capability of wireless
networks, as well as shed light on architecture design from a high level
point of view. The models take into consideration important features
such as the spatial distribution of nodes, strategies for sharing the wire-
less medium, the attenuation of signals with distance, and how infor-
mation is to be transferred, whether it be by encoding, decoding, choice
of power level, spatio-temporal scheduling of transmissions, choice of
multi-hop routes, or other modalities of cooperation between nodes. An
important aspect of the approach is to characterize how the information
hauling capacity scales with the number of nodes in the network.



The monograph begins by studying models of wireless networks
based on current technology, which schedules concurrent transmissions
to take account of interference, and then routes packets from their
sources to destinations in a multi-hop fashion. An index of performance,
called transport capacity, which is measured by the bit meters per sec-
ond the network can convey in aggregate, is studied. For arbitrary
networks, including those allowing for optimization of node locations,
the scaling law for the transport capacity in terms of the number of
nodes in the network is identified. For random networks, where nodes
are randomly distributed, and source-destination pairs are randomly
chosen, the scaling law for the maximum common throughput capacity
that can be supported for all the source-destination pairs is character-
ized. The constructive procedure for obtaining the sharp lower bound
gives insight into an order optimal architecture for wireless networks
operating under a multi-hop strategy.

To determine the ultimate limits on how much information wire-
less networks can carry requires an information theoretic treatment,
and this is the subject of the second half of the monograph. Since
wireless communication takes place over a shared medium, it allows
more advanced operations in addition to multi-hop. To understand the
limitations as well as possibilities for such information transfer, wire-
less networks are studied from a Shannon information-theoretic point
of view, allowing any causal operation. Models that characterize how
signals attenuate with distance, as well as multi-path fading, are intro-
duced. Fundamental bounds on the transport capacity are established
for both high and low attenuation regimes. The results show that the
multi-hop transport scheme achieves the same order of scaling, though
with a different pre-constant, as the information theoretically best pos-
sible, in the high attenuation regime. However, in the low attenuation
regime, superlinear scaling may be possible through recourse to more
advanced modes of cooperation between nodes. Techniques used in ana-
lyzing multi-antenna systems are also studied to characterize the scaling
behavior of large wireless networks.



1
Introduction

Over the past few years there has emerged a network information theory
motivated by the twin goals of applicability as well as tractability vis-à-
vis the rapidly emerging field of wireless networking. A central aspect of
this theory is that the spatial aspects of the system, including locations
of nodes and signal attenuation with distance, are explicitly modeled.
Also, distance is intimately involved even in the performance measure
of transport capacity that is analyzed. This theory has been used to
develop bounds on the distance hauling capacity of wireless networks,
feasibility results, scaling laws for network capacity as the number of
nodes increases, and also suggest some insight into architectures. It
establishes relationships for information transport in wireless networks
between phenomena such as how radio signals attenuate with distance
and the information hauling capacity of networks. It also connects the
more recent field of networking with its emphasis on architecture and
protocols with the more traditional field of communication theory with
its emphasis on signals, transmitters and receivers. This text provides
an account of the salient results.

The focus of this text is on ad hoc wireless networks, a topic which
has aroused much interest in recent years. These are wireless networks
without infrastructure; see Figure 1.1. Examples of technologies
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Fig. 1.1 An ad hoc wireless network.

envisioning such wireless networks are Bluetooth [29] through the use
of scatter-nets, e.g., [13], IEEE802.11 [30] through the use of the Dis-
tributed Coordinated Function, e.g., [3], IEEE802.15.4 ZigBee networks
[34, 33] deployed as multi-hop sensor networks, and IEEE802.16 [31, 32]
deployed as mesh networks.

Such ad hoc wireless networks have been proposed to be operated
in multi-hop mode: packets are relayed from node to node in several
short hops until they reach their destinations. The top layer shown in
the protocol stack in Figure 1.2, the Transport Layer, can address func-
tionalities such as end-to-end reliable delivery of information, as well as
regulating the rate at which data packets are pumped into the network
so as to match it to the rate at which the network can carry informa-
tion. The choice of the sequence of nodes along which to relay is the
routing problem, and is addressed in the Network Layer. At each hop, a
medium access control protocol is employed so that the reception at the
receiver is not interfered with by another nearby transmitter, as well
as to ensure that packets are retransmitted repeatedly, at least a few
times, until an acknowledgement is received from the receiver. Another
important functionality is Power Control. This addresses the power
level at which a packet on a hop is transmitted. Proposals have been
made to address it at the Network Layer [20, 16] or the Medium Access
Control Layer [19, 15]. The Physical Layer addresses issues related to
modulation, etc..
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Network Layer
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Fig. 1.2 A proposed protocol stack for wireless ad hoc networks.

One of the goals of this text is to present results on what the capacity
of wireless networks is under the multi-hop model. Another question is
whether the multi-hop mode of information transfer is indeed an appro-
priate mode. This is motivated by the fact that there are several alter-
native ways in which the wireless medium can be used. To study such
alternatives takes us into the domain of network information theory,
an area in which several apparently simple-looking problems have con-
tinued to defy characterization even after several decades of research.
Another question of interest is how the information transfer capability
of wireless networks scales as the number of nodes increases. This leads
into the issue of scaling laws for wireless networks. Such results can help
in understanding the complicated interactions in wireless networks, and
to shed light on operating and designing more efficient networks.

It is to these questions that this text is addressed. At the same
time, there are several issues that are excluded. Except peripherally,
issues such as energy lifetime, latency, fairness, etc., are not centrally
addressed.

The results presented in this text are as follows.
Sections 2–4 consider arbitrary wireless networks, where node loca-

tions are allowed to be optimized for network performance.
Section 2 introduces the definition of transport capacity, which takes

into account not only the throughputs supported for source–destination
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pairs, but also the distances between sources and their destinations.
Specifically it is the sum of the rates for source–destination pairs
weighted by their distance. It introduces two variants of a so-called
Protocol Model. This postulates a model for successful packet recep-
tion at a receiver, by specifying either a guard zone around a receiver
or an interference footprint around a transmitter. This section presents
results on the scaling behavior of the transport capacity of arbitrary
wireless networks under the Protocol Model. It exhibits a square-root
scaling law in the number of nodes in the network for the transport
capacity.

Section 3 introduces the concepts of Exclusion Region and Inter-
ference Region. Building on them, it presents improved bounds on the
transport capacity of arbitrary wireless networks under the Protocol
Model.

Section 4 introduces the Physical Model, which models successful
reception in terms of the received signal-to-noise-plus-interference ratio
at a receiver. This section shows that there is a correspondence between
the Protocol Model and the Physical Model, and then presents similar
results on the scaling behavior of the transport capacity for arbitrary
wireless networks under the Physical Model.

Sections 5–7 study the performance of random wireless networks,
where nodes are distributed randomly over a domain and destinations
for sources are randomly chosen. Section 5 considers homogenous ran-
dom wireless networks under the Protocol Model, where every node
employs a common transmission range and wishes to transmit at a com-
mon rate. Results on the throughput capacity, the maximum common
rate achievable for every source, are presented. It is shown that the com-
mon throughput that can be furnished to all the n source–destination
pairs is Θ( 1√

n logn
). Since the factor

√
logn grows very slowly, it shows

that random networks so operated are close to best case. An auxiliary
consequence is that utilization of a common range for all transmissions
is nearly optimal.

Section 6 considers homogenous random wireless networks under
the Physical Model, where every node employs a common power
for transmission. Similar results, as in Section 5, on the throughput
capacity for such networks are presented for the Physical Model.
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Section 7 considers random wireless networks with node locations
generated by a Poisson point process, and operating under the Protocol
Model. Nodes are allowed to use different transmission ranges (a com-
mon power can be used too). A constructive scheme shows that with
such flexibility a better common rate for each node is achievable elim-
ination the factor

√
logn, compared to the one achieved in Section 5.

Sections 8 to Section 11 delve into an information theoretic frame-
work, attempting to characterize fundamental limits on the perfor-
mance of wireless networks, under any causal strategy, without making
presuppositions about the manner in which information is sought to be
communicated.

Section 8 first specifies a model for signal attenuation with distance.
The central result of the section is that, in the high attenuation regime,
the scaling behavior of the transport capacity of arbitrary wireless net-
works is similar to that of networks studied in previous sections, after
an appropriate scaling of area. This shows that in this attenuation
regime the proposed multi-hop information architecture towards which
many current design efforts are targeted is an order-optimal archi-
tecture. In this sense information theory provides strategic guidance
to designers on the architecture for information transport in wireless
networks.

Section 9 addresses the scaling behavior of transport capacity in
the low attenuation regime. It presents results showing that the scaling
behavior can be very different compared to that in the high attenua-
tion regime. This shows that the architecture for information transport
in wireless networks under very low attenuation can indeed need to be
quite different from the higher attenuation case. Thus there is a connec-
tion between the attenuation property of the medium and the architec-
ture that needs to be adopted. Also different strategies for information
transport emerge as of interest.

Section 10 studies the transport capacity for wireless networks in the
presence of multi-path fading. The results show that in the high atten-
uation regime, for many fading cases, the scaling behavior is the same
as that in the no-fading environment. So in this attenuation regime
there is no difference in the transport capacity achievable, at least up
to a preconstant.
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Section 11 presents results showing how techniques from Multi-
input Multi-output (MIMO) systems can be applied to study the per-
formance of large wireless networks.
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Fig. 1.3 A summary of the main models and results.
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Section 12 concludes this text.
For the convenience of readers, we summarize the major models and

results in Figure 1.3. Note that we assume that there are n nodes in
the network, and T (n) denotes the transport capacity (bit-meters/sec),
and λ(n) the per-node throughput (bits/second).



2
The Transport Capacity of Arbitrary Wireless

Networks – Protocol Model

This section, as well as Sections 3–5, considers arbitrary networks oper-
ating under a multi-hop mode of information transfer, where the loca-
tions of the nodes, the choice of source–destination pairs, rates along
each hop, transmission time slots, and routing, can be jointly optimized.

For wireless networks envisaged to operate in such a multi-hop
mode of data transfer, the following question is fundamental: how much
information can they transport? More specifically, how will the trans-
port capacity scale with the network size, the number of nodes in the
network? This is the question we try to answer from this section to
Section 5.

In this section, we first introduce the definition of transport capacity
and the network model. Then we present a model for successful trans-
missions: Protocol Model, which specifies the condition under which a
packet can be successfully received.

Given the Protocol Model, assuming that its nodes are located in a
region of area Am2, we show that the transport capacity cannot grow
faster than Θ(

√
An) for a network of n nodes1. On the other hand,

1 Given two functions f and g, we say that f = O(g) if supn |f(n)/g(n)| < ∞. We say that
f = Ω(g) if g = O(f). If both f = O(g) and f = Ω(g), then we say that f = Θ(g).
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networks with grid distribution and neighbor-only transmissions are
shown to achieve Θ(

√
An) bit-meters per second. This shows trans-

port capacity scales as Θ(
√

An) for arbitrary networks under protocol
model. To understand the importance of this result suppose that all
nodes share equally in this transport capacity. Then each obtains only
Θ(

√
A√
n
) bit-meters/second, when the area is held fixed. To interpret this

result note that if each node wants to communicate to a distant node
at a distance of Ω(

√
A) meters away, then it can only obtain a rate of

1√
n
. On the other hand, if each node only wishes to communicate with

its nearest neighbor that is to a distance of O(
√

A√
n
) meters away, then

it can do so at a non-vanishing rate.

2.1 Network and the Protocol Model

Consider an arbitrary network, where n nodes are arbitrarily located in
a disk of area A on the plane. The scenario when nodes locations are
random will be discussed in Sections 5–7. Let Xi denote the location,
as well as the identity, of a node. At each node Xi, there is originating
traffic of rate λij which is destined for a remote node j. Each node can
choose an arbitrary range or power level for any transmission.

We model how networks are intended to work under current tech-
nology and protocol development efforts. The common scheme is that
packets reach destinations by traveling over a multi-hop path. At
each hop, the receiving node decodes an incoming packet, and then
re-transmits to the next node, unless the receiving node is the ulti-
mate destination of the packet2. Packets can be buffered at interme-
diate nodes while awaiting transmission. Note that the choice of the
sequence of nodes along which a packet is sent from its origin to its
final destination is the routing problem.

We assume that each node can transmit at W bits per second over
a common wireless channel shared by all nodes. It will be shown that it
will not change the ensuring capacity results if the channel is broken up

2 Whether alternatives such as amplifying-and-forwarding, or advanced techniques such as
multi-user decoding, or some other choices, would make a significant difference, is the topic
of Sections 5–9.
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into several sub-channels of capacity W1,W2, · · · ,WM such that W =
W1 + · · · + WM .

Each node can choose an arbitrary range or power level for each
transmission. In order for a transmission to be successful, i.e., for a
receiver to correctly decode a packet intended for it, certain require-
ments need to be satisfied. Here we describe two versions of a Protocol
Model, where the conditions for successful transmissions are postulated
geometrically (A different model based on more physical considerations
will be treated in Sections 4, 6 and 7).

2.1.1 The Protocol Model

Suppose node Xi transmits over the m-th sub-channel to a node Xj .
Then this transmission at rate Wm bits/sec is assumed to be success-
fully received by node Xj if

|Xk − Xj | ≥ (1 + ∆)|Xi − Xj |, (2.1)

for every other node Xk simultaneously transmitting over the same
sub-channel.

The quantity ∆ > 0, or more properly a circle of radius (1 +
∆)|Xi − Xj | quantifies a guard zone required around the receiver to
ensure that there is no destructive interference from neighboring nodes
transmitting on the same m-th sub-channel at the same time.

An alternative is to specify an interference footprint around a trans-
mitter, which gives rise to a slightly different model.

2.1.2 A variant of the Protocol Model

Suppose node Xi transmits over the m-th sub-channel to a node Xj at
rate Wm bits/sec. Then this transmission is postulated to be success-
fully received by node Xj if

|Xk − Xj | ≥ (1 + ∆)|Xk − Xl|, (2.2)

for every other node Xk simultaneously transmitting over the same
m-th sub-channel, with Xl denoting intended the recipient of node
Xk’s transmission.



2.2. Definition of transport capacity 157

Here the quantity ∆ > 0 models situations where an interference
footprint is specified by the protocol around the transmitter. The circle
of radius (1 + ∆)|Xk − Xl| models the interference footprint created by
a transmission of range |Xk − Xl| originating at node k, within which
region no other concurrent reception is possible. We will see that both
variants of the Protocol Model lead to the same capacity results.

We note that the choice of the range of a packet is achieved by
power control. The choice of the time transmission is made is achieved
by the medium access control protocol.

2.2 Definition of transport capacity

Suppose that based on a certain overall scheme, ultimately b bits are
successfully transmitted from a node i to an intended node j that is at
a distance dij = |Xi − Xj |. Then we say that the network has pumped
bdij bit-meters. Notice only the distance between the original source
and the final destination counts; extra distance travelled due to, say,
non-straight line routing is not counted.

Definition 2.1. The transport capacity of a specific network is defined
as the maximum bit·meters per second the network can achieve in
aggregate. The transport capacity of n nodes is the maximum of all
achievable transport capacities networks with n nodes in a disk of area
A – the difference is that in this latter case the locations of the n nodes
are also allowed to be optimized, as are the choices of source–destination
pairs.

Thus, if a network is able to support a rate of λij bits per second
from each node i to each node j, then the transport capacity of the
network is the supreme of

∑
i�=j λij |Xi − Xj | over all such supportable

rate vector {λij : 1 ≤ i, j ≤ n}.

2.3 Main results

The following result is the main result of this section for arbitrary
networks.
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Theorem 2.2. The transport capacity of an Arbitrary Network of n

nodes under the Protocol Model is Θ(W
√

An) bit-meters/sec.

This is achievable when the locations of the nodes and the source–
destination pairs are chosen optimally, and the network is optimally
operated. By the phrase “optimally operated” we mean optimized over
the choice of a route, or a multiple set of routes to be used for each
source–destination pair, as well as optimal timing of all transmissions,
i.e., spatio-temporal optimization of all transmissions.

Note that g(n) = Θ(f(n)) if for some constants c1 > 0 and c2 < +∞,

c1f(n) ≤ g(n) ≤ c2f(n). Specifically, an upper bound is
√

8
π

W
∆

√
An bit-

meters/sec for every Arbitrary Network for all spatial and temporal
scheduling strategies, while W

√
A

1+2∆
n√

n+
√

8π
bit-meters/sec (for n a mul-

tiple of four) is an achievable lower bound, when the node locations
and the transmissions are chosen appropriately.

One implication of this result is that each node, on average, obtains
Θ
(

W
√

A√
n

)
bit-meters/sec. Since this quantity diminishes to zero as n

goes large, we see that there is a law of diminishing returns in our
model where the area of the domain is fixed, while the number of nodes
is allowed to grow.

2.4 Main ideas behind the proof

The essential idea to upper-bound the transport capacity in the proof
below is to observe that successful transmissions “consume” area as
they happen. Moreover the radius of such a consumed area is pro-
portional to the transmission range. Since the sum of such areas is
upper-bounded by the limited total area A, it follows from invoking
the convexity of quadratic function, that one can transform this upper-
bound into an upper-bound for the bit-meters per second – the trans-
port capacity.

To show the achievability of Θ(
√

An) bit-meters/second, one can
first arrange the n nodes in grid-like positions, then choose n/2 nodes
as senders with each of them transmitting only to one of its nearest
neighbors.
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2.5 Upper-bounding the transport capacity

In this subsection, we establish the upper-bound for the transport
capacity for networks under the Protocol Model (2.1)3. To recall, the
following are the basic assumptions on the model being considered:

(A.i) There are n nodes arbitrarily located in a disk of area A on the
plane.

(A.ii) Each node can transmit Wm bits/sec over sub-channel m, 1 ≤
m ≤ M , and

∑M
m=1 Wm = W .

Let us consider sub-channel m, and a time instant t ∈ [0,T ] within
a time interval of duration T .

Suppose node Xi is transmitting successfully to node Xj over this
sub-channel at time t, and suppose that node Xk is also transmitting
successfully to some node Xl at the same time. Let Tm(t) denote the
set of all such transmissions ongoing at time t over sub-channel m.

From the triangle inequality and (2.1), we have

|Xj − X�| ≥ |Xj − Xk| − |X� − Xk|
≥ (1 + ∆)|Xi − Xj | − |X� − Xk|.

Similarly,

|X� − Xj | ≥ (1 + ∆)|Xk − X�| − |Xj − Xi|.

Adding the two inequalities, we obtain

|X� − Xj | ≥ ∆
2

(|Xk − X�| + |Xi − Xj |) . (2.3)

This can be interpreted as saying that two disks, one of radius
∆
2 |Xi − Xj | centered at Xj , and the other of radius ∆

2 |Xk − Xl| cen-
tered at Xl, are essentially4 disjoint; as shown in Figure 2.1.

Hence, for all transmissions occurring at time t, disks of radius ∆
2

times the transmission range, centered at the receivers over the same

3 For networks under Protocol Model (2.2), it can be shown similarly.
4 We use the word “essentially” since the two disks have been defined as closed sets and
may intersect at their boundaries.
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Xj

Xl

Xk

Xi

Fig. 2.1 The exclusion disk around each receiver node.

sub-channel m, are essentially disjoint. We call these disks “exclusion
disks.”

Noting that a transmission range is less than the diameter of the
circular domain, it can be shown that at least a quarter of each exclu-
sion disk is within the domain. (This happens when the range of the
transmission is exactly equal to the diameter of the domain). Hence
we get

∑
(i,j)∈Tm(t)

1
4
π(

∆
2

di,j)2 =
∑

(i,j)∈Tm(t)

d2
i,j · π∆2

16
≤ A, (2.4)

where we recall that Tm(t) denotes all the effective transmissions at
time t over sub-channel m, and dij is the distance between node i

and j.
Since at most half the nodes can be transmitting at any time while

the other half nodes are receiving, there are at most n/2 concurrent
transmissions at time t, i.e., |Tm(t)| ≤ n/2. By the Cauchy-Schwarz
inequality we have∑

(i,j)∈Tm(t)

di,j ≤
√ ∑

(i,j)∈Tm(t)

d2
i,j ·

∑
(i,j)∈Tm(t)

12

≤
√ ∑

(i,j)∈Tm(t)

d2
i,j

n

2
≤
√

8An

π∆2 .
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So the instantaneous rate in bit-meters/second at time t, over sub-
channel m, is upper-bounded by

Wm

∑
(i,j)∈Tm(t)

di,j ≤
√

8A

π

Wm

∆
√

n.

This is true at any time t and for every sub-channel m. Hence sum-
ming over all the sub-channels, by Assumption (A.ii), we deduce that

the transport capacity is upper-bounded by
√

8A
π

W
∆

√
n bit-meters per

second. �

2.6 A constructive lower bound

We now show that for n a multiple of 4, W
1+2∆

n
√

A√
n+

√
8π

bit-meters/sec
is indeed achievable under the Protocol Model, for an appropriate
arrangement of n nodes in a disk of area A.

Define r := 1
1+2∆

√
A√

n
4 +

√
2π

. Center the domain of radius
√

A√
π

at the

origin. Then place transmitters at locations (j(1 + 2∆)r ± ∆r,k(1 +
2∆)r) and (j(1 + 2∆)r,k(1 + 2∆)r ± ∆r) where |j + k| is even, as
shown in Figure 2.2. Also place receivers at (j(1 + 2∆)r ± ∆r,k(1 +
2∆)r) and (j(1 + 2∆)r,k(1 + 2∆)r ± ∆r) where |j + k| is odd. Each
transmitter chooses its nearest neighboring node as its receiver, which
is at a distance r away. A simple calculation shows that all the transmit-
ters can transmit concurrently, there is no interference from any other

Fig. 2.2 The nodes arrangement for achieving the lower bound.
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transmitter-receiver pair. It is easy to verify that one can put n/2 trans-
mitter – receiver pairs within the domain. (This is done by noting that
for a tessellation of the plane by squares of side s, all squares inter-
secting a disk of radius R −

√
2s are entirely contained within a larger

concentric disk of radius R. The number of such squares is greater than
π(R −

√
2s)2/s2. Now take s = (1 + 2∆)r and R =

√
A√
π
). For this n-

node network, there are n/2 concurrent transmissions feasible with the
same range r and rate W ; thus W

1+2∆
n
√

A√
n+

√
8π

bit-meters/sec is achieved.
Notice also that in achieving this, there is no need to divide the original
into m separate sub-channels.

A more careful design will be presented in Section 3 which leads to
an even higher achievable transport capacity.

2.7 Notes

This section is mainly based on Sections II–III of [12]; though a sim-
plified proof for the upper bound for the transport capacity is pre-
sented here.



3
Sharpening the Bounds on Transport Capacity of

Arbitrary Networks – Protocol Model

In this section, more carefully developing notions of exclusion region
and interference region [1] associated with each active sender-receiver
pair, we present improved upper and lower bounds to those presented
in Section 2. The new bounds bracket the transport capacity to within
a factor of

√
8.

For simplicity, throughout the section, we assume that the network
of n nodes is located arbitrarily in a unit area disk. It can be seen that
under the Protocol Model shrinking the area from A square meters
to 1 simply involves rescaling all distances by a factor of 1√

A
without

effecting what transmissions are concurrently feasible. Thus the only
difference is that all transport capacity results are to multiplied by the
factor

√
A.

For clarity, we also assume that there is only one channel with rate
W bits/second. It is easy to show, as in Section 2, that the results
also hold for the multi-channel case when the channel is divided into
separate sub-channels with sum bandwidth W1 + W2 + · · · + Wm = W.

The proofs will be tailored to networks under the second variant of
the Protocol Model. Similar proofs can be used for networks under the
first variant as well.
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3.1 Protocol Model

Let us recall the Protocol Model variants for postulating a successful
transmission from node Xi to node XR(i):
Protocol Model:

|Xk − XR(i)| ≥ (1 + ∆)|Xi − XR(i)|,
∀k ∈ {Active transmitters},k �= i. (3.1)

The above model specifies a guard zone around the receiver. In this
section, we provide the proofs for the following variant, which specifies
an interference footprint around the transmitter.
Protocol Model Variant:

|Xk − XR(i)| ≥ (1 + ∆)|Xk − XR(k)|,
∀k ∈ {Active transmitters},k �= i. (3.2)

Remark 3.1. As will be easily seen from the proofs, the bounds
on the transport capacity of wireless networks hold for the other
model too.

3.2 Exclusion region and interference region

Recall that the basic idea to upper bound the transport capacity in
Section 2 is to show that the disks, centered at each active receiver
with radius ∆

2 times the transmission range, are essentially disjoint.
This is an example of the notion of exclusion region. In this section we
further develop this concept of exclusion region based on [1]. We also
introduce a concept of generalized interference region.

Definition 3.2. Exclusion region: For a particular configuration of
transmitters and receivers in a network, an exclusion region of an active
transmitter-receiver pair is an associated area such that, for the trans-
mission to be successful, it must be kept disjoint from every other
exclusion region at that time and over the same sub-channel.

The following result shows that there is a capsule-shaped exclusion
region around each transmitter-receiver pair for the Protocol Model, as
shown in Figure 3.1.
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Fig. 3.1 The ∆r/2 neighborhood of a transmitter-receiver pair.

Xj

Xl
Xk

Xi

X

Y

Fig. 3.2 Two transmitter-receiver pairs.

Theorem 3.3. In a wireless network under the protocol model, if
(Xi,Xj) is an active transmitter-receiver pair, then the ∆dij/2 radius
neighborhood of the line joining them is an exclusion region for (i, j).

Proof. Let (Xi,Xj) and (Xk,Xl) be any two concurrently active
transmitter-receiver pairs. Let X and Y be two points on the line seg-
ments XiXj and XkXl, respectively; see Figure 3.2. By the triangle
inequality, we have

|Xi − X| + |X − Y | + |Y − Xl| ≥ |Xi − Xl|, (3.3)

|Xk − Y | + |Y − X| + |X − Xj | ≥ |Xk − Xj |. (3.4)

Adding them, we get

|Xi − X| + |X − Xj | + |Xk − Y | + |Y − Xl| + 2|X − Y |
≥ |Xi − Xl| + |Xk − Xj |.

Since |Xi − X| + |X − Xj | = |Xi − Xj |, the above becomes

|Xi − Xj | + |Xk − Xl| + 2|X − Y | ≥ |Xi − Xl| + |Xk − Xj |.
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According to the variant of the Protocol Model (3.2), we get

|Xi − Xj | + |Xk − Xl| + 2|X − Y | ≥ (1 + ∆)(|Xi − Xj | + |Xk − Xl|),

which simplifies to

|X − Y | ≥ ∆
2

(dij + dkl).

This suffices to show that the ∆
2 dij neighborhood of XiXj , and the

∆
2 dkl neighborhood of XkXl, are disjoint. Otherwise there exist point
Z, point X on XiXj , and point Y on XkXl, such that |Z − X| < ∆

2 dij

and |Z − Y | < ∆
2 dkl. Then we would get

|X − Y | < |Z − X| + |Z − Y | <
∆
2

(dij + dkl),

which is a contradiction.

Now we introduce the definitions of interference region and the gen-
eralized protocol transmission model.

Definition 3.4. Generalized Protocol Model and the Interfer-
ence Region: Suppose that associated with each transmitter-receiver
pair (Xk,XR(k)) there is an area Ik, such that for a transmission from
Xi to XR(i) to be successful, it is necessary that

XR(i) /∈ Ik, ∀k ∈ {Active transmitters}, k �= i. (3.5)

Such an area Ik will be called an Interference Region.

Remark 3.5. Interference Regions corresponding to the variant of
the Protocol Model (3.2) are Ik := {X : |X − Xk| < (1 + ∆)|Xk −
XR(k)|}, which is a disk of radius (1 + ∆)|Xk − XR(k)| centered at Xk.
Also, it is easy to see that a simple exclusion region is a disk centered
at each Xk with radius η/2, where η = infX /∈Ik

|XR(k) − X|.

Now, we present an Exclusion Region for the Generalized Protocol
Model.
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Theorem 3.6. The set Ek := {X : |X − XR(k)| < |X − Y |,∀Y /∈ Ik},
is a valid exclusion region for each k, and it is convex.

Proof. First we show that Ek is a valid exclusion region. If not,
then there exist distinct i and j (denoting nodes by their indices
for brevity), both concurrently active, such that Ei ∩ Ej �= φ. Assume
X ∈ Ei ∩ Ej �= φ. Then

|X − XR(i)| < |X − Y |, ∀Y /∈ Ii; (3.6)

|X − XR(j)| < |X − Y |, ∀Y /∈ Ij .

By (3.5), we know XR(i) /∈ Ij and XR(j) /∈ Ii. So setting Y = XR(j)
in the first inequality of (3.6), and Y = XR(i) in the second, we get

|X − XR(i)| < |X − XR(j)|,
|X − XR(j)| < |X − XR(i)|.

This is a contradiction, and hence Ek is a valid exclusion region for
every active k.

Now we show that Ek is convex. If not, let X,Y ∈ Ek and Z /∈ Ek,
with Z lying on the line segment XY . By the definition of Ek we know

|X − XR(k)| < |X − Q|, ∀Q /∈ Ik (3.7)

|Y − XR(k)| < |Y − Q|, ∀Q /∈ Ik,

while for some Q′ /∈ Ik,

|Z − XR(k)| ≥ |Z − Q′|. (3.8)

Substituting Q = Q′ into (3.7), we get

|X − XR(k)| < |X − Q′|, (3.9)

|Y − XR(k)| < |Y − Q′|.

Now define Γ := {X : |X − XR(k)| < |X − Q′|}, which is a convex
set since it is an open half-plane. Inequalities (3.9) imply that X,Y ∈
Γ, which implies further that Z ∈ Γ, by the convexity of Γ. This is a
contradiction to (3.8).
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Xk
XR(k)

X

X'

Interference Region Exclusion Region

Fig. 3.3 The exclusion region when Ik is a disk.

3.2.1 An exclusion region for the variant of the Protocol
Model (3.2)

Now Theorem 3.6 can be applied to the variant (3.2) of the Protocol
Model; it shows that Ek is an ellipse; see Figure 3.3.

Theorem 3.7. Suppose Ik is a disk of radius (1 + ∆)|Xk − XR(k)|
centered at Xk. Then Ek is the region inside the ellipse with Xk and
XR(k) as the foci, and eccentricity 1

1+∆ , i.e.,

Ek = {X : |X − XR(k)| + |X − Xk| ≤ (1 + ∆)|XR(k) − Xk|}. (3.10)

Proof. As in Figure 3.3, for a point X in the exclusion region, extend
XkX towards X, and assume X ′ is the point crossing the boundary of
Ik. Since Ik is the open interior of a disk, it is easy to verify that

inf
Y /∈Ik

|X − Y | = |X − X ′|.

Hence we have

|X − XR(k)| < |X − Y |, ∀Y /∈ Ik

⇔ |X − XR(k)| ≤ |X − X ′|
⇔ |X − XR(k)| + |X − Xk| ≤ |X − X ′| + |X − Xk| = |X ′ − Xk|

= (1 + ∆)|XR(k) − Xk|
⇔ |X − XR(k)| + |X − Xk| ≤ (1 + ∆)|XR(k) − Xk|.
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The last expression represents an ellipse with Xk,XR(k) as the foci,
and eccentricity 1

1+∆ .

3.3 Improved bounds for transport capacity

In this subsection we apply the results on the exclusion regions to
give improved upper and lower bounds for the transport capacity of
arbitrary wireless networks under the Protocol Model.

Lemma 3.8. With at least two active transmitter-receiver pairs,
at least a quarter of the area of the exclusion region, identified in
Theorem 3.7, must lie inside the unit disk.

Proof. Two active transmitter-receiver pairs implies the existence of
a pair (Xk,XR(k)) such that at least one point on the boundary of its
exclusion region – the ellipse with (Xk,XR(k)) as focus – must be inside
the unit disk. This, by geometric argument, guarantees that the unit
disk contains at least a quarter of the area of the ellipse. The detailed
proof can be found in Lemma 3.2 of [1].

Combining the results developed in this section, we obtain the fol-
lowing improved upper bound.

Theorem 3.9. Under the variant (3.2) of the Protocol Model, the
transport capacity of arbitrary wireless networks is upper bounded by√

8
π

1√
(1 + ∆)

√
∆

√
2 + ∆

W ·
√

n. (3.11)

Proof. Denote by T (t) the set of active transmitter-receiver pairs at
time t1. By Theorem 3.7, each transmitter-receiver pair (k,R(k)) has
an exclusion region which is an ellipse with major axis 2a = rk(1 + ∆)

1 As noted at the beginning of this section, the result holds even if the channel consists of
m sub-channels with W1 + · · · + Wm = W .
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and minor axis 2b = rk

√
∆2 + 2∆. The area of the ellipse is πab. Since

at least one-fourth of the ellipse is within the unit disk domain, and
the exclusion regions are disjoint, we have

1
4

∑
(k,R(k))∈T (t)

1
4
πrk(1 + ∆) · rk

√
∆2 + 2∆

=
∑

(k,R(k))∈T (t)

π

16
(1 + ∆)

√
∆2 + 2∆ · r2

k

≤ 1.

Now, we can use this refined bound to replace the bound in (2.4).
The rest of the proof remains the same. The instantaneous bit-meters
rate at time t is thus upper-bounded by

W
∑

(i,j)∈T (t)

di,j ≤
√

8
π

W√
(1 + ∆)∆(2 + ∆)

√
n.

This is true for every t and hence it is an upper bound on the
transport capacity.

One can also construct an improved lower bound for the transport
capacity based on the results on exclusion regions.

Theorem 3.10. There exists an arrangement of node locations and
traffic patterns such that under the variant of the Protocol Model (3.2)
with parameter ∆, the network can achieve√

1
π

W√
(1 + ∆)

√
∆

√
2 + ∆

√
n bit-meters/sec. (3.12)

Proof. Suppose square S, with edge length L =
√

2/π, is a square
inscribed in the unit disk. We will only consider putting nodes inside S.

Let r =:
√

2L2

n(1+∆)
√

∆
√

2+∆
, a =: r(1 + ∆), and b =: r

√
∆

√
2 + ∆.

Now tessellate S with an axis-parallel grid of rectangles of size a × b.
There are L/a = columns and L/b rows, and more than n/2 rectangles
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a
aea

R3

T3

T1

R1

T2
b

R2

Fig. 3.4 The arrangement of transmitter-receiver pairs.

because

L/a × L/b =
L2

r2(1 + ∆)
√

∆
√

2 + ∆
=

n

2
.

Now insert into each rectangle an ellipse with major axis a and
minor axis b, and a pair of nodes on the foci, with the left one being a
transmitter and the right one being its receiver; see Figure 3.4. Notice
the eccentricity of the ellipse is e = 1/(1 + ∆) and the distance between
each pair is ae = r.

Now we show that every pair can successfully transmit and receive
under the variant of the Protocol Model (3.2). This is readily seen by
noticing that

|T1 − R2|2 = (ae)2 + b2 = a2e2 + a2(1 − e2) = a2 = r2(1 + ∆)2, and

|T1 − R3| = a = r(1 + ∆).

Since there are n/2 pairs of transmitter-receiver pairs, the bit-
meters/sec transport specified in (3.12) is achieved.

3.4 Notes

This section is based on [1]. The concept of Exclusion Regions can
be generalized to subsets of transmitter-receiver pairs. A set of exclu-
sion regions for networks using directional antennas can be found in
Section 4 of [1].



4
The Transport Capacity of Arbitrary Wireless

Networks – Physical Model

In the previous Sections 2–3, the criterion for a successful transmission
is specified by geometric constraints: a guard zone around a receiver
or an interference footprint around a transmitter. In this section, we
consider a more physical criterion for successful reception specified by
the requirement on the signal to interference plus noise ratio (SINR) –
called the Physical Model. Since common radio technology for decoding
a packet works only if the SINR is sufficiently large, this model is more
faithful to physical considerations. In this section, the scaling behav-
ior of the transport capacity for arbitrary networks is characterized.
We show that there exists a correspondence between networks under
the Protocol Model and networks under the Physical Model. Thus by
simply translating the result for the Protocol Model, Θ(

√
n) bit-meters

per second is achieved for networks under the Physical Model. Next, we
show that the upper bound is also of order Θ(

√
n), by carefully exam-

ining interference generated by transmitters and bounding it. Thus we
see that the results for the simple geometric interference model are
robust and continue for more physically realistic models.
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We consider networks with nodes lying in a square1 of area A. Net-
works distributed in different domains can be considered similarly.

4.1 Physical Model and the Generalized Physical Model

Let {Xk;k ∈ T (t)} be the subset of nodes simultaneously transmitting
at some time instant t over a certain sub-channel m. Let Pk be the
power level chosen by node Xk, for k ∈ T (t). Then the transmission
between node Xi, i ∈ T (t), and XR(i) is successful if

Pi
|Xi−Xj |α

N +
∑

k∈T
k �=i

Pk
|Xk−Xj |α

≥ β, (4.1)

where N is the ambient noise power level. Once this is satisfied, we
assume that the data rate over the link is W bits/second. This models
the situation where a minimum signal to interference plus noise ratio
(SINR) of β is required for successful receptions. The signal power is
assumed to decay with distance r as 1/rα. The exponent α is call the
“path loss exponent” for the power. In this section we assume α > 2.

A. Generalized Physical Model

The above model assumes that a transmission can only occur at one
of two rates: W bits/sec if the SINR exceeds β, and 0 bits/sec other-
wise. This model of data rate can be generalized to be continuous in
SINR, based on Shannon’s capacity formula for the additive Gaussian
noise channel. (This will however require that the modulation or cod-
ing scheme for the transmission to be adapted to the existent SINR, a
fact that entails further overhead for coordinating between the nodes.)
In this case the data rate from transmitter Xk to its receiver XR(k) is
assumed to be

Wk = Hm log

1 +
Pk

|Xk−XR(k)|α

NHm +
∑

i∈T , i�=k
Pi

|Xi−XR(k)|α

 (4.2)

1 The reason for considering a square, instead of a disk, is only for the sake of clarity in
proofs. The results hold true for a disk domain and in fact any domain which is the closure
of its interior.
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where Hm is the bandwidth of channel m in hertz, such that the total
bandwidth is finite:

∑
m Hm ≤ H0; and N/2 is the noise spectral density

in watts/hertz.

4.2 Correspondence between Protocol Model and
Physical Model, and a lower bound

The Protocol Model stipulates local, geometric constraints, while
in the Physical Model every transmission influences every reception.
They thus seem very different from each other, but, interestingly, as
shown by the following result, there is a correspondence between them.

Theorem 4.1. Let ∆(β) := (482α−2

α−2 β)1/α. Suppose that for ∆ >

∆(β) the Protocol Model allows simultaneous transmissions for all
transmitter-receiver pairs in a set T (t). Then there exists a power
assignment {Pi, 1 ≤ i ≤ n} allowing the same set of transmissions under
the Physical Model with threshold β.

Proof. By Theorem 3.7, we know that an exclusion region for an active
transmitter-receiver pair (Xk,XR(k)) is an ellipse with Xk,XR(k) being
the foci:

Ek = {P : |P − XR(k)| + |P − Xk| = (1 + ∆)|XR(k) − Xk|}.

Denote by Dk,DR(k), disks of radius ∆rk/2 around Xk and XR(k)
respectively. Then all such disks for active transmitters and receivers
are disjoint.

Now we show that a power assignment Pk = c∆2r2
k with c ≥

N
cα

(∆
√

2A)α−2 suffices, where cα := 24
α−22α−2, and N is the ambient

noise power.
First, we consider the interference Ik at a receiver XR(k).
Let disk D′

j be the disk centered at XR(j) with radius |Xi − XR(j)|,
and Dij := {x : x ∈ Di ∩ D′

j}; see Figure 4.1. Denote by B,C the two
points where Di intersects D′

j . Since the radius of Di is less than that
of D′

j , we know ∠CXiXR(j) = ∠BXiXR(j) ≥ π/3. So the area of Dij is
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XR(j)

C

B

Dij

Di

D'
j

Xi

Fig. 4.1 Calculating the interference.

at least one third of Di. Letting dA be the area element, we now have

Ik :=
∑

i∈T ,i�=k

Pi

|Xi − XR(k)|α

=
∑

i∈T ,i�=k

4c

π

∫
Di

dA
|Xi − XR(k)|α

≤
∑

i∈T ,i�=k

12c

π

∫
Dik

dA
|Xi − XR(k)|α

≤
∑

i∈T ,i�=k

12c

π

∫
Dik

dA
|x − XR(k)|α

=
12c

π

∫
∪i∈T ,i�=kDik

dA
|x − XR(k)|α

.

Since (∪i∈T ,i�=kDik) ∩ Dk = φ, we can bound the right hand side of
the last expression such that

Ik ≤ 12c

π

∫
|x−XR(k)|≥∆rk/2

dA
|x − XR(k)|α

=
12c

π

∫ ∞

∆rk/2

2πrdr

rα

=
24c

α − 2
(

2
∆rk

)α−2 = ccα(∆rk)2−α.
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Noting that rk ≤
√

2A, the SINR received at XR(k) is

Pk/rα
k

N + Ik
≥ c∆2r2−α

k

N + ccα(∆rk)2−α

=
∆α

N
c ∆α−2rα−2

k + cα

≥ ∆α

2cα
≥ β.

This shows that any feasible set of active transmitter receiver pairs
in the Protocol Model with sufficiently large ∆, dependent on β, admits
a power assignment for the same set of nodes to transmit under the
Physical Model. This allows one to get feasibility results for the Physical
Model based on those for the Protocol Model.

In particular, consider the network involving a grid of ellipses, as
in Section 3, Figure 3.4. Then based on Theorem 3.10, noting that L

corresponds to
√

A now given the nodes’ layout, we get the following
achievability result for the Physical Model.

Theorem 4.2. There exists an arrangement of node locations and
traffic patterns so that a network of n nodes under the Physical Model
with SINR threshold β can achieve√

A

2
W

√
n√

(1 + ∆)
√

∆
√

2 + ∆
bit-meters/sec,

where ∆ := (2cαβ)1/α.

Remark 4.3. Note that the above theorem also establishes a similar
lower bound, differing by only a constant ratio, for networks under the
Generalized Physical Model. This is because a successful transmission
in a network under the Physical Model requires that the SINR be larger
than a threshold, which enables a constant rate between these two
nodes under the Generalized Physical Model.
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4.3 Upper bound

In this subsection, we present an upper bound on the transport capac-
ity for arbitrary networks under the Generalized Physical Model (4.2).
We note that this also establishes an upper bound, differing by only a
constant ratio, for networks under the Physical Model. This is because
if a network under the Physical Model can realize a successful trans-
mission between Xi and XR(i) at rate W bits/sec, the SINR must be
no less than β. Then in that case, the Generalized Physical Model also
allows a constant rate transmission corresponding to the SINR β in
Shannon’s formula between nodes Xi and XR(i).

Theorem 4.4. Consider the Generalized Physical Model (4.2) with
N > 0, α > 2, and available total bandwidth H0 =

∑M
m=1 Hm, where

Hm is the bandwidth used in the m-th channel. If the maximum
power that a node can employ on the m-th sub-channel is bounded
by Pmax = HmNnα/2, then the transport capacity of an n node net-
work located in a unit square and under the Generalized Physical
Model is upper bounded by H0µα

√
n bit-meters per second, where

µα := log2 (e)(α(13
√

2 + 6) + 4((
√

2 + 1)2)α).

To prove this result, one needs to carefully examine the interference
experienced by each receiver. The following lemma is needed in the
interference analysis.

Lemma 4.5. Consider an m × m square Q, tessellated by m2 unit
squares, where m is a power of 2. Suppose there are k (≤ m2) points
{Yi,1 ≤ i ≤ k} in Q, and each unit square contains at most one point.
Let there be a total ordering “≺” imposed on the k points. For
1 ≤ i ≤ k, define Yi’s “in-order distance” with respect to Q, as di :=
min({m

√
2} ∪ {|Yj − Yi| : 1 ≤ j ≤ k,j �= i,Yi ≺ Yj}), i.e., the distance

to the nearest higher ordered point. Then
∑k

i=1 di ≤ 3
√

2m2 − 2
√

2m.

Proof. Let f(m) denote the upper bound on
∑k

i=1 di over any choice
of the point locations and their ordering. We will obtain a recurrence
for f(m).
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Note first that f(1) =
√

2. For m ≥ 4, divide the grid into four
equal quadrants of size m/2 × m/2. For any point Yi, say in
quadrant Q′, let d′

i = min({m
2

√
2} ∪ {|Yj − Yi| : 1 ≤ j ≤ k,j �= i, Yj ∈

Q′,Yi ≺ Yj}) be the in-order distance of Yi with respect to Q′.
Next note that for any two points Yi and Yj in the same quadrant,

|Yi − Yj | ≤ m
2

√
2. So either di or dj is no more than m

2

√
2. Hence there

is at most one point in each quadrant with in-order distance m
√

2
with respect to Q. Such a point can only be the maximal element in
the quadrant under the ordering “≺”, implying d′

i = m
2

√
2. For point

Yj that is not the maximal element in the quadrant, dj ≤ d′
j since dj

involves taking the minimum over a larger set.
We thus have

∑k
i=1 di ≤

∑k
i=1 d′

i + 4(m
√

2 − m
2

√
2), which gives

f(m) ≤ 4f(m/2) + 2m
√

2.

Now we can prove the lemma by induction. First, for m = 1, f(1) =√
2, so the base condition is satisfied. For m ≥ 2, we get

f(m) ≤ 4f(m/2) + 2m
√

2

≤ 4(3
√

2
m2

4
− 2

√
2
m

2
) + 2m

√
2

= 3
√

2m2 − 2
√

2m.

Now we prove Theorem 4.4.
Proof of Theorem 4.4: Suppose at a time instant t over the m-th

sub-channel, {(Xk,XR(k)) : k ∈ T (t)} is the set of active transmitter-
receiver pairs. Define rk := |Xk − XR(k)| and rki := |Xk − XR(i)|. Let
w be a node transmitting at power level maxi∈T (t){Pi}. Let T ′(t) =
T (t)\{w}. Then the bit-meters per second achieved at this time instant
over sub-channel m, with Wi denoting the data rate obtained by Xi, is
given by:∑

i∈T (t)

riWi =
∑

i∈T (t)

riHm log2 (1 +
Pi/rα

i

NHm +
∑

k∈T (t),k �=i
Pk
rα
ki

)

≤ rwHm log2 (1 +
Pw/rα

w

NHm
)

+
∑

i∈T ′(t)

riHm log2 (1 +
Pi/rα

i∑
k∈T (t),k �=i

Pk
rα
ki

).
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Because ln(1 + xa) ≤ ax, for all a > 0,x > 0, and Pw ≤ Pmax ≤
NHmn

α
2 , we have∑

i∈T (t)

riWi

≤ Hm log2 (e)

α(
Pw

NHm
)1/α +

∑
i∈T ′(t)

ri ln(1 +
Pi/rα

i∑
k∈T (t),k �=i

Pk
rα
ki

)


≤ Hm log2 (e)

α
√

n +
∑

i∈T ′(t)

ri ln(1 +
Pi/rα

i∑
k∈T (t),k �=i

Pk
rα
ki

)

 . (4.3)

Let S be the the summation in (4.3), i.e.,

S :=
∑

i∈T ′(t)

ri ln(1 +
Pi/rα

i∑
k∈T (t),k �=i

Pk
rα
ki

)

We will bound it by grouping transmissions first into classes based on
their range. Then, for each class, only the interference coming from
transmitters in the same class is considered. This certainly is lower
than the actual interference, but it is still enough to lead to a good
upper bound for the achievable rate along each link.

Consider all the transmitters {i ∈ T ′(t)}. Divide them into classes
based on their transmission ranges {ri := |Xi − XR(i)|}, as follows. For
j ≥ 0, define {

C0 := {i : i ∈ T (t), ri < L0},

Cj := {i : i ∈ T (t),Lj−1 ≤ ri < Lj},

where Lj := 2j−	log
√

n
. Note that 2j−1
√

n
< Lj ≤ 2j

√
n
.

Now consider the transmissions in class Cj .
Tessellate the unit square using small squares of side length Lj .

Suppose the Cj-class receivers are distributed in Gj small squares:
Fg,1 ≤ g ≤ Gj , such that each contains at least one such receiver.
Assume in each small square Fg, there are ng Cj-class receivers. Denote
by (Xgh, rgh,Pgh) the triple for receiver, range, and transmission power,
for 0 ≤ h ≤ ng, and suppose that they are sequenced according to Pgh

with Pg0 being the largest.
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First we consider the contribution from {Xg0,1 ≤ g ≤ Gj} to S.

A. Contribution from {Xg0,1 ≤ g ≤ Gj}
Define a total ordering “≺” in the set by ordering them according to
Pg0, and breaking ties arbitrarily (so that Pg10 < Pg20 ⇒ Xg10 ≺ Xg20).
Define lg := min({

√
2} ∪ {|Xg10 − Xg0| : 1 ≤ g1 ≤ Gj , g1 �= g, Xg0 ≺

Xg10}). Thus, from the definition of lg, for any receiver Xg0, there
must be a transmitter within a distance lg of Xg0’s sender, which is
transmitting with power at least Pg0. (Note for g = Gj , the node w

that is transmitting at the globally maximum power level, is within a
distance

√
2.)

Thus, the interference at node Xg0, Ig0, is at least

Ig0 ≥ Pg0

(dg + Lj)α
.

So the contribution from {Xg0,1 ≤ g ≤ Gj} is upper bounded by

Gj∑
g=1

rg0 ln (1 +
Pg0
rg0α

Ig0
) ≤

Gj∑
g=1

rg0 ln (1 +
Pg0
rg0α

Pg0
(dg+Lj)α

)

≤
Gj∑
g=1

α(dg + Lj) (Because ln(1 + xα) ≤ αx)

≤ α(Lj(3
√

2
1

Lj
2 ) + LjGj)

≤ α

Lj
(3

√
2 + 1), (4.4)

where the third inequality is by Lemma 4.5, and the last is because
Gj ≤ 1/L2

j .

B. Contribution from {Xgh,1 ≤ g ≤ Gj ,h ≥ 1}
For each small square Fg, define the total Cj-class power as Pg :=∑ng−1

h=0 Pgh. Then the interference seen by Xgh, Igh, is at least
Pg−Pgh

(
√

2Lj+Lj)α , by considering only those transmitters whose receivers are
within small square Fg, and upper bounding the distance of such trans-
mitters. Since Pg0 is the largest, we have Pg ≥ 2Pgh, implying that
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Pg − Pgh ≥ Pg

2 . Thus the interference Igh is bounded as

Igh ≥ Pg/2
(
√

2Lj + Lj)α
.

So, the bit-meters per second from {Xgh,1 ≤ g ≤ Gj ,h ≥ 1} is upper
bounded as

Gj∑
g=1

ng−1∑
h=1

rgh ln

(
1 +

Pgh/rα
gh

Igh

)

≤
Gj∑
g=1

ng−1∑
h=1

rgh ln

(
1 +

2Pgh

Pg

((
√

2 + 1)Lj)α

rα
gh

)
. (4.5)

For class C0, since 2Pgh ≤ Pg and ln(1 + xα) ≤ αx, we have
Gj∑
g=1

ng−1∑
h=1

rgh ln

(
1 +

2Pgh

Pg

((
√

2 + 1)Lj)α

rα
gh

)

≤
Gj∑
g=1

ng−1∑
h=1

rgh ln

(
1 +

((
√

2 + 1)Lj)α

rα
gh

)

≤
Gj∑
g=1

ng−1∑
h=1

α(
√

2 + 1)L0

≤ α(
√

2 + 1)L0 · 1
L2

0

≤ α(
√

2 + 1)
√

n. (4.6)

For class Cj with j > 0, since Lj−1 ≤ rgh < Lj , we have
Gj∑
g=1

ng−1∑
h=1

rgh ln(1 +
2Pgh

Pg

((
√

2 + 1)Lj)α

rα
gh

)

≤
Gj∑
g=1

ng−1∑
h=1

Lj ln(1 +
2Pgh

Pg

((
√

2 + 1)Lj)α

Lα
j−1

)

=
Gj∑
g=1

ng−1∑
h=1

Lj ln(1 +
2Pgh

Pg
((

√
2 + 1)2)α)
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≤
Gj∑
g=1

ng−1∑
h=1

Lj
2Pgh

Pg
((

√
2 + 1)2)α

≤ Lj((
√

2 + 1)2)α

Gj∑
g=1

2 (Because
∑

h Pgh = Pg)

≤ Lj((
√

2 + 1)2)α2
1
L2

j

= ((
√

2 + 1)2)α 2
Lj

. (4.7)

Finally, combining (4.4, 4.6, 4.7), we have

S =
∑
i∈T ′

ri ln

1 +
Pi/rα

i∑
k∈T,k �=i

Pk
rα
ki


=
∑
j≥0

∑
i∈Cj

ri ln(1 +
Pi/rα

i∑
k∈T,k �=i

Pk
rki

α

)

=
∑
j≥0

Gj∑
g=1

rg0 ln(1 +
Pg0/rg0

α

Ig0
) +

∑
j≥0

Gj∑
g=1

ng−1∑
h=1

rgh ln(1 +
Pgh/rα

gh

Igh
)

≤
∑
j≥0

α

Lj
(3

√
2 + 1) + (α(

√
2 + 1)

√
n) +

∑
j>0

(((
√

2 + 1)2)α 2
Lj

)

=
α

L0
(3

√
2 + 1)

∑
j≥0

2−j + (α(
√

2 + 1)
√

n)

+(((
√

2 + 1)2)α 2
L0

)
∑
j>0

2−j

< α2
√

n(3
√

2 + 1)(2) + (α(
√

2 + 1)
√

n) + (((
√

2 + 1)2)α4
√

n) · 1

=
√

n(α(13
√

2 + 5) + 4((
√

2 + 1)2)α. (4.8)

Given the above bound, by (4.3), we now have∑
i∈T

riWi ≤ Hm log2 (e)(α
√

n +
√

n(α(13
√

2 + 5) + 4((
√

2 + 1)2)α))

= Hm log2 (e)
√

n(α(13
√

2 + 6) + 4((
√

2 + 1)2)α)

= Hmµα

√
n.
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Summing over all the sub-channels proves the theorem. �

Remark 4.6. It is interesting to notice that the bound does not
require that there be a minimum separation distance between two
nodes. This is in contrast to the results under the information the-
oretic framework we will present in Sections 8–10, where, usually, a
minimum separation is needed. Note that the attenuation function in
the model has a singular point at the origin. When nodes can be arbi-
trary close to each other, for example in so called “dense networks
model, it becomes very subtle as to how to model attenuation. Indeed
for physical reasons nodes may have to necessarily be separated by a
minimum positive distance, which is the model we assume in the infor-
mation theoretic treatment in Sections 8–11.

Given Theorem 4.4, by considering a square of area A and shrinking
it to a unit square using the mapping P ′

i = PiA
−α/2 for the power levels,

we know the following is also true.

Theorem 4.7. Consider n-node networks within a square of area A,
such that α > 2, N > 0, and power level is bounded by Pmax =
HmN(nA)

α
2 for any channel with bandwidth Hm. Then the transport

capacity scales as Θ(
√

An).

4.4 Notes

This section is based on [2] and [12]. The transport capacity under
the Physical Model was first studied in [12], which gives a constructive
Θ(

√
n) lower bound, and an O(n

α−1
α ) upper bound, where α is the path

loss exponent. This upper bound was improved to Θ(
√

n) in [2] using
the techniques presented here, closing the gap between lower and upper
bounds.



5
The Throughput Capacity of Random Wireless

Networks – Protocol Model

In this section, we study wireless networks where nodes are randomly
distributed.

Often the locations of transmitter-receiver pairs cannot be chosen,
or unknown a priori. One is therefore interested in how random
node locations will influence the performance of wireless networks. We
present results that address this question through the study of the scal-
ing behavior of the throughput capacity, which is the guaranteed rate
that can be supported uniformly for all source–destination pairs. For
simplicity we assume that every node has originating traffic with a sin-
gle randomly chosen destination. Under appropriate assumptions, the
results can be generalized to other contexts where not all nodes are
source, or a source may have (differing) traffic for several destination
nodes.

We describe the model for random networks and first consider the
Protocol Model1. In addition to (2.1) or (2.2), in this section we impose
a further constraint on the range of transmitting nodes. We will sup-
pose that all nodes employ a common transmission range. Clearly this
can only lead to the diminishment of a network’s capacity; however
we show that the effect is not significant. We define the throughput

1 The Physical Model will be discussed in Section 6.

184
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capacity and show that it is of order Θ( W√
n logn

). Thus these results
suggest that random networks are nearly best case, since even by opti-
mally placing nodes one cannot obtain a common throughput exceeding
O( 1√

n
) bits/sec when destinations lie at non-vanishing distances from

their sources. Moreover it also suggests that not too much is lost by
homogeneous operation constrained to employ a common range for all
transmissions. The results also provide a construction of an order opti-
mal architecture, which is useful for designers.

5.1 Random networks, Protocol Model, and
throughput capacity

Consider a random network where n nodes are uniformly and inde-
pendently distributed in a unit square. Each node has a random des-
tination – a node – it wishes to send packets to. The destination for
node Xi, i ∈ {1, · · · ,n}, is chosen as follows. A position is first picked
uniformly from within the unit square, then the node nearest to it is
chosen as node Xi’s destination.

We consider the case when the transmission range and the traffic
pattern are homogeneous for each node, defined as follows.

Definition 5.1. The Protocol Model: All nodes employ a common
transmission range r for all their transmissions. Node Xi can success-
fully transmit to node XR(i) if

i) The distance between the transmitter and the receiver is no
more than r, i.e., |Xi − XR(i)| ≤ r.

ii) For every node Xk, k �= i, transmitting at the same time,
|Xk − XR(i)| ≥ (1 + ∆)r.

iii) The data rate between such successful transmitter-receiver
pair is W bits/second.

Remark 5.2. It is easy to extend all the proofs we present to net-
works under the variant of the Protocol Model (3.2) to get the same
results. Also, the results hold even if the channel is split into several
sub-channels, but with the same sum-rate of W bits/second.



186 The Throughput Capacity of Random Wireless Networks – Protocol Model

Now we define the per-node throughput of random wireless net-
works.

Definition 5.3. Feasible Throughput: A throughput of λ(n) bits per
second for a random network of n nodes is said to be feasible if there is a
choice of the common range r, and a scheme to schedule transmissions
and choice of routes between sources and destinations, so that every
node can achieve data transfer to its destination at such rate. The
scheme needs to specify, for each link, when it should be active under
the transmission model (Definition 5.1), and whose packets it should
send. A packet can be delayed at intermediate nodes before reaching
its destination.

Since we are considering random networks, the transmission
arrangement and hence the feasible throughput will be influenced by
the randomness. We introduce the following definition for the through-
put capacity of wireless networks.

Definition 5.4. Order of The Throughput Capacity of Random Wire-
less Networks: The throughput capacity of random wireless networks is
said to be of order Θ(f(n)) bits per second if there exist deterministic
positive constants c and c′ such that

lim
n→∞

Prob( λ(n) = cf(n) is feasible ) = 1; while

lim
n→∞

Prob( λ(n) = c′f(n) is feasible ) < 1. (5.1)

5.2 Main results

We have the following main result.

Theorem 5.5. The order of the throughput capacity of random wire-
less networks under the Protocol Model is

λ(n) = Θ
(

W√
n logn

)
bits/sec.
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In fact the condition (5.1) can be strengthened to exhibit a sharp
cutoff phenomenon: There are positive constants c1 and c2, not depend-
ing on n, ∆, or W , such that λ(n) = c1W

(1+∆)2
√

n logn
bits/sec is feasi-

ble, and λ(n) = c2W
∆2

√
n logn

bits/sec is infeasible, both with probability
approaching one as n → ∞. Thus the limit of the left hand side in (5.1)
is actually zero.

5.3 A constructive lower bound on throughput capacity

In this subsection, we present a scheme that achieves λ(n) =
c1W

(1+∆)2
√

n logn
bits/sec for every node in the network to its chosen des-

tination, with probability approaching one as n → ∞.
First the unit square is divided into small cells of such a size that

each of them holds at least one but no more than O(logn) nodes.
Second, the cells are divided into a finite number of non-interfering
groups which can take turns in transmission without causing interfer-
ence. Finally we show that a simple routing strategy – forwarding a
packet from cell to cell “along” the line connecting the originating cell
to the destination cell containing each node and its randomly chosen
end point – can fulfill the job.

Remark 5.6. In the proof, cells are chosen to be squares as an exam-
ple mainly to simplify presentation. Based on results in Section IV of
[12], any Voronoi tessellation (See Figure 5.1) satisfying the following
property can be used to achieve the same result:

• Every Voronoi cell contains a disk of area K̃1 logn/n for some
K̃1 > 1; and

• Every Voronoi cell is contained in a disk of area K̃2 logn/n

for some K̃2 > K̃1.

5.3.1 Tessellating the unit square by small squares

We tessellate the unit square by square cells of side sn =
√

K logn
n ; see

Figure 5.2, and consider the number of nodes within each of them.
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Fig. 5.1 A Voronoi Tessellation.

sn

Fig. 5.2 A tessellation of the unit square into small square cells. The shaded cells are
concurrently transmitting cells with M = 4.

Lemma 5.7. For any K > 1, we have that, with probability going to
one, each cell holds at least one but no more than Ke logn nodes.

Proof. Observe that, for a particular cell, a particular node Xi, 1 ≤ i ≤
n, falls into it with probability pn := s2

n = K logn
n , a Bernoulli event.

So the probability that a particular cell is empty is (1 − pn)n. By
the union bound, the probability that at least one cell is empty is
upper-bounded by the total number of cells times (1 − pn)n, which
is 1

s2
n
(1 − pn)n = n

K logn(1 − K logn
n )n. Since 1 − x ≤ exp(−x), we know

(1 − K logn
n )n ≤ n−K , and thus 1

s2
n
(1 − pn)n → 0 as n → ∞ whenever

K > 1.
Now consider the upper-bound for the number of nodes, Nn, in a

particular cell. The number of nodes has a binomial distribution with
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parameters (pn,n). So by the Chernoff bound we have,

Pr(Nn > Ke logn) ≤ E exp(Nn)
exp(Ke logn)

.

Since E exp(Nn) = (1 + (e − 1)pn)n ≤ nK(e−1) (because 1 + x ≤
exp(x)), we have Pr(Nn > Ke logn) ≤ n−K . As long as K > 1, by the
union bound we know

Pr(Some small cell has more than Ke logn nodes) ≤ n
1

nK
→ 0,

as n goes to infinity.

Remark 5.8. It is easy to show by the Chernoff Bound that, for
K > 1/(1 − e−1), there exists a = a(K) > 0 such that Pr(Every cell
contains at least a logn nodes)→ ∞, as n → ∞. So in fact each cell
contains Θ(logn) nodes.

In the sequel we fix K to be some constant larger than 1.

5.3.2 Concurrently transmitting cells, transmission
schedule, and interference

There are 1/sn × 1/sn =
√

n/(K logn) ×
√

n/(K logn) cells in the tes-
sellation. For simplicity, assume 1

sn
is an integer. Index them as Si,j ,

with i denoting the column number and j the row number.
For a positive integer M , let C(k1,k2) := {Si,j : i mod M = k1, j

mod M = k2} for 0 ≤ k1,k2 ≤ M − 1. All the cells in C(k1,k2) are
called “non-interfering cells”, and C(k1,k2) is called a “non-interfering
group;” see Figure 5.2. (The name anticipates the property established
in the sequel that after choice of an appropriate range r, one node
in each of the cells in C(k1,k2) can transmit, with all the concurrent
transmissions being successful.)

Now we define the transmission range and schedule.

Transmission Schedule:

All nodes choose a common transmission range rn = 2
√

2sn, so that
every node can cover all its neighboring cells. All the M2 non-interfering
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groups C(i, j) take turns to transmit in a round robin manner. If group
C(i0, j0) is scheduled in a time slot, one node from each of the cells of
C(i0, j0) can transmit (simultaneously) to its neighboring cells.

As will be shown in later subsections, any node in an active cell can
be the active node for a particular slot. The chosen node will then send
data packets to a node in a neighboring cell. This will be specified in
more detail in the sequel when elaborating on the routes followed by
packets.

One node in each of the cells in a non-interfering group can transmit
successfully in the same active slot. Following from the Protocol Model
(Definition 5.1), it is easy to verify that if M is large enough then there
will be no interference from nearby cells.

Lemma 5.9. There exists c3 > 0 such that, if the network transmits
according to the above transmission schedule with M = c3(1 + ∆), then
every transmission will be successful.

5.3.3 The routing

According to the model, each node Xi, 1 ≤ i ≤ n, generates data pack-
ets at rate λ(n) with an end destination chosen as the node nearest
to a randomly chosen location Yi. Denote by Xdest(i) the node nearest
to Yi, and by Li the straight-line segment connecting Xi and Yi. The
packets generated by Xi will be forwarded toward Xdest(i) in a multi-
hop manner, from cell to cell in the order that they are intersected by
Li. In each hop, the packet is transmitted from one cell to the next
cell intersecting Li. Any node in the cell can be chosen as a receiver.
Finally, after reaching the cell containing Yi, the packet will be for-
warded to Xdest(i) in the next active slot for that cell. This can be done
because Xdest(i) is within a range of rn to any node in that cell, by
Lemma 5.7.

A. A Bound on the Number of Routes Each Cell Needs to Serve

First, we bound the probability that a line will intersect a particular
cell.
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Lemma 5.10. There exists a constant c4 > 0 such that for every line
Li and cell Sk0j0 ,

p := Prob{Line Li intersects Sk0,j0} ≤ c4

√
logn

n
.

Proof. Note Sk0j0 is contained in a disk of radius dn =: 1√
2
sn =

√
K logn

2n

centered at sn’s center D; see Figure 5.3. Suppose Xi is at distance x

from the disk. Extend the two tangent lines originating from Xi equally
such that |XiA| = |XiB| and |XiC| =

√
2, where C is the mid-point

of AB.
Then Li intersects Sk0j0 only if Yi is in the shaded area. Its area

is less than the minimum of 1 and the area of the triangle, which is√
2 ·

√
2√

(x+dn)2−d2
n

, less than 2dn/x.

Since Xi is uniformly distributed, the probability density that it is
at a distance x away from the disk is bounded above by c6π(x + dn),
for some constant c6 > 0. So we get

Prob(Li intersects Sk0j0) ≤
∫ √

2

dn

(
2dn

x
∨ 1) · c6π(x + dn)dx

≤ c4

√
logn

n
.

Fig. 5.3 The exclusion region when Ik is a disk.
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Based on the above lemma, we can show the following uniform
bound on the number of routes served by each cell.

Lemma 5.11. We have, for any constant c5 > c4,

Prob

(
sup
(k,j)

{ Number of lines Li intersecting Sk,j} ≤ c5
√

n logn

)
→ 1.

Proof. First we bound the number of routes served by one particular
cell Sk0,j0 . Define iid random variables Ii, 1 ≤ i ≤ n, as follows:

Ii =
{

1, if Li intersects Sk0,j0 ;
0, if not.

Then Pr(Ii = 1) = p, ∀i, where p is defined as in Lemma 5.10.
Denote by Zn the total number of routes served by Sk0,j0 . Then

Zn := I1 + · · · + In. Thus by the Chernoff Bound, for all positive m

and a, Pr(Zn > m) ≤ EeaZn

eam . Because 1 + x ≤ ex, we have

EeaZn = (1 + (ea − 1)p)n ≤ exp(n(ea − 1)p)

≤ exp(c4(ea − 1)
√

n logn).

Now choosing m = c5
√

n logn, we get

Pr(Zn > c5
√

n logn) ≤ exp(
√

n logn(c4(ea − 1) − ac5)).

Since c5 > c4, one can choose a small enough such that

Pr(Zn > c5
√

n logn) < exp(−ε
√

n logn), (5.2)

for some constant ε > 0.
Thus by the union bound, we have

Prob
(
Some cell intersects more than c5

√
n logn lines

)
≤
∑
k,j

Prob
(
Cell Sjk intersects more than c5

√
n logn lines

)
≤ 1

s2
n

exp(−ε
√

n logn)

=
n

K logn
exp(−ε

√
n logn).

The right hand side goes to zero as n goes to infinity.
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5.3.4 Lower bound on throughput capacity of
random networks

From Lemma 5.9 we know that there exists a transmitting schedule
such that in every M2 = (c3(1 + ∆))2 slots, each cell gets one slot to
transmit at rate W bits/second with transmission range rn. So the rate
at which each cell gets to transmit is W/(c3(1 + ∆))2 bits/second.

By Lemma 5.11, each cell needs to transmit at rate less than
λ(n)c5

√
n logn, with probability approaching one. This can therefore

be accommodated by all cells if

λ(n)c5
√

n logn ≤ W

(c3(1 + ∆))2
.

Thus we have proven the achievability part of Theorem 5.5. �

Remark 5.12. In each cell, the traffic passing through that cell can
be handled by any designated node in that cell.

5.4 Upper bound on throughput capacity

We now establish the upper bound on throughput capacity. First, for
a given choice of common range r, we study the probability that there
is at least one isolated node. From this a lower bound is determined
on the common range that nodes need to employ in order for no node
to be isolated. Then a similar technique, as for arbitrary networks, is
used to show the upper bound.

A. The Probability of an Isolated Node

In [21, 11] the following result is proved on the appearance of an isolated
node in a random network.

Theorem 5.13. For all ε > 0, if rn = (1 − ε)
√

logn
nπ ,then

Prob(There is an isolated node) → 1, as n goes to infinity; while

if rn = (1 + ε)
√

logn
nπ , then Prob(There is an isolated node) → 0, as n

goes to infinity.
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Since each node does need to communicate with some other node,
no node can be allowed to be an isolated node. Given this result, it

follows that rn should be asymptotically larger than
√

logn
nπ .

B. Number of Simultaneous Transmissions

Under the Protocol Model, as established in the upper bound for arbi-
trary networks (see (2.3) of Section 2) we know that each transmission
“consumes” area. Specifically, disks of radius ∆

2 rn around every trans-

mitter are disjoint. Notice that the area of each disk is π∆2r2
n

4 , and at
least 1/(4π) portion is within the unit square. Thus we get the following
lemma.

Lemma 5.14. The maximum number of simultaneous transmissions
feasible is no more than 1

1
4π

π∆2r2
n

4

= 16
∆2r2

n
.

C. The Upper Bound for Throughput Capacity

Let L̄ be the expected distance between two uniformly and indepen-
dently chosen points within the unit square. Then the expected length
from a node to its destination is L̄ − o(1) since there is always a node

within Θ(
√

logn
n ) distance from any point (Lemma 5.7). Thus on aver-

age each packet needs L̄−o(1)
rn

hops to the destination. Since each node
generates packets at rate λ(n), this means the bits per second being
transmitted by the whole network is at least nλ(n) L̄−o(1)

rn
. Hence by

Lemma 5.14 we have

nλ(n)
L̄ − o(1)

rn
≤ W

16
∆2r2

n

.

By Theorem 5.13 we know
√

logn/n is a lower bound for rn; so we
have

λ(n) ≤ 16W

n∆2rn(L̄ − o(1))
≤ c7W

∆2
√

n logn
.

Thus we have shown the upper bound for the throughput capacity
of random wireless networks. �
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5.5 Notes

These results on the throughput capacity of random wireless networks
are from [12]. We have used the Chernoff bound rather than Vapnik-
Chervonenkis theory.



6
The Throughput Capacity of Random Wireless

Networks – Physical Model

In this section, we study the performance of random wireless networks
under the Physical Model.

The focus is on the maximum common throughput that can be
supported for every node simultaneously.

We first define the Physical Model and then study the scaling behav-
ior of the throughput capacity. We show that a common throughput
of order Θ( W√

n logn
) bits per second is feasible; while Θ( W√

n
) bits per

second is not. This again shows that the results under the simple geo-
metric model are fairly robust to assumptions that are more physically
realistic.

6.1 Random networks, Physical Model, and throughput
capacity

As in the last section, we consider a random network where n nodes are
uniformly and independently distributed in a unit square. Each node
has a random destination node it wishes to send packets to. The desti-
nation for node Xi, i ∈ {1, · · · ,n}, is chosen as in Section 5. A position

196
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is first picked uniformly from within the unit square, then the node
nearest to it is chosen as node Xi’s destination.

We consider the case where the power level, rather than the trans-
mission range, and the traffic requirements, are homogeneous for each
node, as follows.

Definition 6.1. The Physical Model: All nodes employ a common
transmission power P for all their transmissions. Node Xi can success-
fully transmit to node XR(i) if

i) The signal to interference plus noise ratio (SINR) at the
receiver is no less than a threshold β, i.e., assuming {Xk;k ∈
T (t)} is the subset of nodes simultaneously transmitting at
time t, then

P
|Xi−XR(i)|α

N +
∑

k∈T (t)
k �=i

P
|Xk−XR(i)|α

≥ β, (6.1)

where N is the ambient noise power level. The signal power
is assumed to decay with distance r as 1

rα , with α > 2.
ii) The data rate between every successful transmitter-receiver

pair is W bits/second.

The definition of throughput under the Physical Model is the same
as in the last section. A throughput of λ(n) bits per second for a random
network of n nodes is feasible if there is a scheme to schedule trans-
missions so that every node can send data to its destination at such a
rate. A packet can be delayed at intermediate nodes before reaching its
destination.

We are interested in finding the maximum feasible throughput for
a network.

Definition 6.2. The Order of the Throughput Capacity of Random
Wireless Networks: The throughput capacity of random wireless net-
works is said to be of order Θ(f(n)) bits per second if there exist
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deterministic positive constants c and c′ such that

lim
n→∞

Prob( λ(n) = cf(n) is feasible ) = 1; while

lim
n→∞

Prob( λ(n) = c′f(n) is feasible ) < 1.

6.2 Main results

The following theorem establishes an upper bound and a separate lower
bound for the throughput capacity.

Theorem 6.3. For the Physical Model, there exist positive constants
c,c′ such that a throughput of λ(n) = cW√

n logn
bits/sec is feasible, while

λ(n) = c′W√
n

bits/sec is not, both with probability approaching one as
n → ∞.

Specifically, the lower bound can be achieved by using a similar strat-
egy as in the achievability part for the Protocol Model, where the
small square cells are divided into M2 non-interfering groups and at
each time slot only one group is allowed to transmit. It can be shown
that, for any common power level P > 0, one can choose M sufficiently
large (a function of P,α,β only) to achieve Θ( W√

n logn
) bits/sec. On

the other hand, suppose L̄ is the mean distance between two points
independently and uniformly distributed in the domain, then there
is a deterministic sequence ε(n) → 0, not depending on N,α,β or W ,

such that
√

8
π

W

L̄(β
1
α −1)

1+ε(n)√
n

bit-meters/sec is infeasible with probabil-

ity approaching one as n → ∞.

6.3 A constructive lower bound

A strategy similar to that of the last section on the Protocol Model
is used. First the unit square is tessellated into small square cells, and
non-interfering groups are defined. Then, for any P > 0, we show that
the SINR for successful transmission can be achieved if the number of
such groups is sufficiently large (but still constant). Thus Θ( W√

n logn
)

bits/sec throughput is achieved.



6.3. A constructive lower bound 199

A. Square Tessellation and non-interfering groups

Tessellate the unit square by small squares of side sn =
√

K logn
n for

some K > 1; see Figure 5.2.
There are 1/sn × 1/sn =

√
n/(K logn) ×

√
n/(K logn) square

cells. Furthermore, by Lemma 5.7, there is at least one node, but no
more than Ke logn nodes, in each cell s, with probability approaching
one as n → ∞.

Index the cell s as Si,j , with i denoting the column number and
j the row number. For a positive integer M , let C(k1,k2) := {Si,j : i

mod M = k1, j mod M = k2}, for all 0 ≤ k1,k2 ≤ M − 1. All the cells
in C(k1,k2) are called “non-interfering cells”; see Figure 5.2.

The transmission schedule is the same as in the last section, which
we briefly summarize as follows.

B. Transmission Schedule

In every M2 time slots, every cell gets one slot to transmit. When a
cell has an active slot in which it is allowed to transmit, one node in
it transmits to a node in one of the neighboring cells according to the
routing algorithm specified in last section. The receiver node can be
any node in the neighboring cell.

If each transmission can be guaranteed to be successful, then
Θ( W√

n logn
) bits/sec is achievable, just as in the analysis in last section.

Now we show that successful transmission, i.e., a SINR ratio larger
than a given β, can be achieved if M is large enough (but still a constant
as n → ∞).

C. Adjusting M to Make SINR ≥ β

Note that every node employs common transmission power P for trans-
mission.

Consider an active sender Xi and its intended receiver XR(i), lying
in cell Sj0,k0 . First, the distance between them is no more than 2

√
2sn,

i.e., twice the diagonal of a cell. Second, all the interference comes
from the same non-interfering group to which Sj0,k0 belongs. So, if one
draws squares of size 2k · Msn, k = 1,2, · · · , centered at the lower left
corner of Sj0,k0 , then there are at most 8k interfering cells from the k-th
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square; see Figure 5.2. Furthermore, the distance from a interfering cell
to Sj0,k0 is at least k · Msn − sn.

Now we can calculate a lower bound on the achieved SINR at a
receiver as follows:

Pi
|Xi−XR(i)|α

N +
∑

k∈T (t)
k �=i

Pk
|Xk−XR(i)|α

≥
P

(2
√

2sn)α

N +
∑∞

k=1 8k P
(kMsn−sn)α

(6.2)

=
P

(2
√

2)α

Nsα
n + 8P

Mα

∑∞
k=1

k
(k− 1

M
)α

.

Since
∑∞

k=1
k

(k− 1
M

)α converges when α > 2, and sn → 0, we see that

by letting M sufficiently large, the SINR can be made larger than the
specified β. Thus successful transmissions are guaranteed for such a M ,
and Θ( W√

n logn
) bits/sec is indeed achieved.

Remark 6.4. The sum
∑∞

k=1
k

(k− 1
M

)α can be bounded as follows:

∞∑
k=1

k

(k − 1
M )α

=
∞∑

k=1

1
(k − 1

M )α−1
+

1
M

∞∑
k=1

1
(k − 1

M )α

≤ 1
(1 − 1

M )α−1
+
∫ ∞

1− 1
M

1
xα−1

+
1
M

(
1

(1 − 1
M )α

+
∫ ∞

1− 1
M

1
xα

)

=
1

(1 − 1
M )α−1

+
(1 − 1

M )−(α−2)

α − 2
+

1
M

1
(1 − 1

M )α

+
1
M

(1 − 1
M )−(α−1)

α − 1
.

6.4 Upper bound

In Section 2 we have shown that
√

8
π

W
∆

√
n bit-meters per second is an

upper bound on the transport capacity for arbitrary wireless networks
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under the Protocol Model. We can show this is also an upper bound on
the transport capacity for random networks under the Physical Model.
This will prove the assertion since there are n nodes, and the average
distance between a source node and its destination is L̄ − o(1).

Suppose that, Xi is concurrently successfully transmitting to XR(i),
while Xj is to XR(j). From the Physical Model 6.1, we have

P
|Xi−XR(i)|α

P
|Xj−XR(i)|α

≥ β,

which means that

|Xj − XR(i)| ≥ (1 + ∆)|Xi − XR(i)|,

with ∆ := (β
1
α − 1). Hence any set of transmissions feasible for random

networks under the Physical Model corresponds to a set of successful
transmissions for an arbitrary network, under the Protocol Model. Thus
the upper bound on the transport capacity for the latter also holds for
the former.

6.5 Notes

These results are from [12].



7
Improved Throughput for Random Wireless
Networks Using Differentiated Transmission

Ranges

In Section 6 we considered the throughput capacity of random wireless
networks under the Physical Model, assuming every node employs the
same transmission power. The constructive lower bound shows that
Θ( W√

n logn
) bits per second for each node is achievable; while Θ( W√

n
)

bits per second is an upper bound.
This section addresses this gap for a slightly different model by

showing a constructive scheme achieving Θ( W√
n
) bits per second for

every node. In this model, the network is generated as a Poisson random
process with density n in the unit square, and each node is only the
destination of one other node. In contrast to the scheme used in the
proceeding section, different ranges are used for different transmissions.
The import of this is that even the factor

√
logn present in the earlier

results employing a common range can be dispensed with, however at
the expense of a more complicated architecture for packet transport,
as shown below.

By using techniques from percolation theory [10], one can show that
a “highway system” can be formed in the random network. The claimed
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rate is then achieved by routing local traffic onto the highway system,
and then distributing packets off later to their destinations.

The results can also be generalized to random networks under the
Protocol Model when different transmission ranges are allowed.

7.1 Model

Consider a domain consisting of a unit square, where nodes are ran-
domly distributed according to a Poisson point process with density n.
Each node Xi uniformly picks a destination node as a destination for
the traffic originating at that node. However, an additional restriction
is imposed that each node serves as exactly one destination1. Thus the
source–destination pairs yield a permutation matrix. Communication
uses a multi-hop mode, and a node Xi may select a power level Pi

for its transmission of a particular packet. Whether a transmission is
successful depends on the received SINR, and we recall the Physical
Model here.

Definition 7.1. The Physical Model: Node Xi can successfully trans-
mit to node XR(i) if

i) The signal to interference plus noise ratio (SINR) at the
receiver is no less than a threshold β, i.e., assuming {Xk;k ∈
T } is the subset of nodes simultaneously transmitting,

Pi
|Xi−XR(i)|α

N +
∑

k∈T
k �=i

Pk
|Xk−XR(i)|α

≥ β, (7.1)

where N is the ambient noise power level. The signal power
decays with distance r as 1

rα with α > 2.
ii) The data rate between every successful transmitter-receiver

pair is W bits/second.

1 The destination selection here is slightly different to the one in last section; however the
difference is not fundamental. One can also easily show the average source–destination
distance here is also a positive constant.
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7.2 Overview of the constructive scheme

The main idea is to show first that a “highway system” can be formed.
It consists parallel horizontal highways, as well as parallel vertical high-
ways, that go from one side of the unit square to the opposite side.
Specifically, to form the horizontal highways, the unit square is divided
into horizontal rectangles of width

√
2c√
n

log n√
2c

. Then using techniques
from percolation theory, one can show at least γ log n√

2c
horizontal high-

ways can be formed within each rectangle, with each hop being no more
than 2

√
2c/

√
n, with probability approaching one as n → ∞. By sym-

metry, the vertical highways can be formed similarly.
Once the highway system is formed, one can show that a time shar-

ing scheme allows each highway to route packets at a constant rate.
The idea is to use non-interfering groups, which allow nearby nodes to
share the transmission slots, as in Section 5.

Now, the routing of a packet from its source to the destina-
tion can be divided into three stages. In the first stage, the source
node forwards the packet to a nearby highway – it is no more than
c
√

2log(
√

n/
√

2c)/
√

n away. Then the packet is routed along the high-
way system, first horizontally and then vertically, towards its end
destination. In the last stage, the packet is delivered to the desti-
nation from the highway nearby, again with distance no more than
c
√

2log(
√

n/
√

2c)/
√

n. All the above happen with probability going to
one, with Θ( W√

n
) bits/sec rate for each node, by carefully choosing all

the parameters involved.

7.3 Highway system

In this section, first the construction of the highway system will be
shown, then analysis will be presented showing that constant bit rate
for each highway can be indeed achieved.

A. Construction

Tessellate the unit square first using 45◦-angled squares of size c/
√

n, as
depicted in the left-hand side of Figure 7.1. For each positive c, we have

Prob(A square contains at least one node) = 1 − e−c2 := p.
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Fig. 7.1 Construction of the bond percolation model. A small square in the left figure is
said to be open if it contains at least one node, meaning the corresponding edge of the
square lattice in the right figure is open. (Based on Figure 2 of [9].)

A square is called open if it contains at least one node2; otherwise,
it is called closed. Note that the small squares are open or closed inde-
pendent of each other.

Now connect one diagonal of each such small square in the way
depicted in Figure 7.1; thus a square lattice of size

√
2c/

√
n emerges.

The edges in the lattice can be open, with probability p, or closed with
probability 1 − p, independently from each other – the bond percolation
model in percolation theory [10]. A path consisting of edges, is called
an open path if all the edges are open. In this subsection we call such
small horizontal squares h-squares for brevity.

We consider the number of open paths that go from the left side
of the square lattice to the right side. Slice the unit square into hor-
izontal rectangles of width

√
2c√
n

log
√

n√
2c

; see Figure 7.2. Note there are

logm × m h-squares in each rectangle with m :=
√

n√
2c

. The following
theorem shows that one can find many open paths going from left to
right in each rectangle.

2 “Open” and “closed” are used here according to the convention in percolation theory in
the opposite sense that they are used in electrical circuits. “Open” means there exists a
“channel” such that “fluid”, in this case packets, can flow across; while “closed” means
that packets cannot flow.
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log mRn

Fig. 7.2 The unit square is divided into m/ logm horizontal rectangles of width logm/m
each. Thus each rectangle contains logm × m h-squares. (Based on Figure 4 of [9].)

Theorem 7.2. For c large enough, there exists a positive constant
γ = γ(c) such that there are γ logm = γ log(

√
n√
2c

) disjoint open paths in
each rectangle crossing from left to right, with probability approaching
one as n goes to infinity.

To prove this result, the following results from percolation theory are
needed (see Eqs (1.15), (6.41) and Theorem 2.45 in [10] for reference).

Lemma 7.3. Let Zn be a square lattice with n × n h-squares and
0 < p ≤ 1. The probability Pp(0 ↔ ∂Zn) that there exists an open path
from the center 0 of Zn to its boundary ∂Zn, is bounded by

Pp(0 ↔ ∂Zn) ≤ 4
3
(3p)n.

Lemma 7.4. Let Rn be a rectangle embedded in the square lattice.
Let An,1 be the event that there exists an open path between the left
and right side of Rn, and An,b the event that there are b edge-disjoint
such crossings. We have
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1 − Pp(An,b) ≤ (
p

p − p′ )
b (1 − Pp′(An,1)),

for all 0 ≤ p′ < p ≤ 1.

Proof of Theorem 7.2: We focus on one particular rectangle Rn. Con-
sider a new bond percolation model on Rn such that the “open” prob-
ability for each edge is p′, a parameter to be determined later. Denote
this model as R′

n, and define its “dual graph”, Q′
n, of R′

n as follows.
Put a vertex in the center of each h-square of Rn and connect the
neighboring vertices; see Figure 7.3. An edge in Q′

n is open if and only
if it crosses an open edge in S′

n. Now denote by An,1 the event that
there is an open path in R′

n that crosses from left to right, and by Bn,1

the event that there is a closed path in Q′
n that crosses from bottom

to top. We have An,1 ∩ Bn,1 = φ, because occurrence of both means a
crossing between an open edge in R′

n and a closed edge in Q′
n, which

is a contradiction to the construction of Q′
n. Furthermore, we have

Pp′(An,1) + Pp′(Bn,1) = 1 because whenever An,1 does not occur Bn,1

occurs.
Index the bottom-line vertices of Q′

n by i, 1 ≤ i ≤ m, and denote
by B̄n,1(i) the existence of an open path in Q′

n that crosses it from
the bottom to the top and starts from vertex i. Since there are logm

vertices in each column of Q′
n, we have for all q and i,

Pq(B̄n,1(i)) ≤ Pq(0 ↔ ∂Slogm).

Q’n

R’n(Rn)

Fig. 7.3 A picture of R′
n, shown in solid lines, and its dual graph Q′

n, shown in dotted lines.
(Based on Figure 5 of [9].) Note that no open path traversing from left to right in R′

n means
the existence of a closed path in Q′

n from bottom to top.
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Therefore, because edges in Q′
n and R′

n are closed with probability
1 − p′,

Pp′(Bn,1) ≤
m∑

i=1

P1−p′(B̄n,1(i))

≤
m∑

i=1

P1−p′(0 ↔ ∂Slogm)

≤ 4m

3
(3(1 − p′))logm,

where the first inequality is a union bound, and the last inequality is
by Lemma 7.3.

Now we apply Lemma 7.4 to lower bound the probability that there
are γ logm disjoint paths in rectangle Rn crossing from left to right.
Actually, we have

1 − Pp(An,γ logm) ≤ (
p

p − p′ )
γ logm Pp′(Bn,1), (7.2)

for all p′ < p. By choosing p′ = 2p − 1, we get p/(p − p′) = ec2 − 1 < ec2

and 1 − p′ = 2(1 − p) = 2e−c2 . Substituting into (7.2) we get

1 − Pp(An,γ logm) ≤ (ec2)γ logm Pp′(Bn,1)

≤ mγc2 4m

3
(6e−c2)logm

=
4
3
m(γ−1)c2+log6+1.

Thus the probability of finding γ logm disjoint paths in a particular
rectangle is bounded above as

Pp(An,γ logm) ≥ 1 − 4
3
m(γ−1)c2+log6+1.

Since there are m/ logm such rectangles and they are independent
of each other, the probability of having γ logm disjoint paths in every
rectangle is

(Pp(An,γ logm))m/ logm ≥ (1 − 4
3
m(γ−1)c2+log6+1)

m
logm

= exp
(

m

logm
log(1 − 4

3
m(γ−1)c2+log6+1)

)
.



7.3. Highway system 209

Notice if (γ − 1)c2 + log6 + 1 ≤ −1, then the above expression goes to
one as m goes to infinity. It is easy to check that c2 > log6 + 2 and
γ ≤ 1 − log6+2

c2
suffices. �

Thus for each of the
√

n√
2c

/ log
√

n√
2c

horizontal rectangles we find

γ log
√

n√
2c

disjoint paths that cross the unit square from left to right.

Similarly, we can find γ log
√

n√
2c

disjoint vertical paths that cross the

unit square from bottom to top, for each of the
√

n√
2c

/ log
√

n√
2c

vertical
rectangles. These paths form a highway system for the routing we will
present below. Note that all this happens with probability going to one
as n goes to infinity.

B. The Achievable Throughput on the Highways

Recall each edge along a highway path means the corresponding 45◦-
angled square is not empty. Pick one node as the designated sender
and receiver; it is the intended receiver from the previous hop, and
the sender for the next hop with an intended receiver within range
2
√

2c/
√

n. Let every such designated node use a common power P > 0.
For each hop along every such path to have a constant rate, we can
use the idea of “non-interfering groups” from Sections 5 and 6. That
is, we use time-division multiplexing among different but finite non-
interfering groups. Suppose there are M2 such groups as shown in
Figure 7.4; then when one node is transmitting, the received signal

X

Fig. 7.4 A non-interfering group when M = 3, with X being an active transmitter. Also
shown is the first layer of interfering 45◦-angled squares to X.
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power is at least P/(2
√

2c/
√

n)α. Moreover, the interference experi-
enced by an active node can be upper bounded as follows. Assume
node X is such an active node; see Figure 7.4. The possible interfering
45◦-angled squares are those in the same non-interfering group as X’s.
They are located on a series of squares centering at the 45◦-angled
square containing X; Figure 7.4 shows the first layer of interfering
squares. Clearly there are (at most) 8 interfering 45◦-angled squares
on the first layer; the minimum distance between X and an interfering
node within them is at least (M − 1)c/

√
n. It is also easy to see that

there are (at most) 8k interfering 45◦-angled squares on the k-th layer,
with distance at least (kM − 1)c/

√
n from X, for all k > 0. Thus the

received SINR at X satisfies the following:

SINR =
Pi

|Xi−XR(i)|α

N +
∑

k∈T
k �=i

Pk
|Xk−XR(i)|α

≥
P

(2
√

2sn)α

N +
∑∞

k=1 8k P
(kMsn−sn)α

=
P

(2
√

2)α

Nsα
n + 8P

Mα

∑∞
k=1

k
(k− 1

M
)α

,

where sn :=
√

2c/
√

n. Similar to the derivation in (6.2), it is easy
to show there exists cα > 0 such that, whenever M > 1 and α > 2,∑∞

k=1
k

(k− 1
M

)α < cα. Thus,

SINR >

P
(2

√
2)α

Nsα
n + 8P

Mα cα

=
1

(2
√

2)α

8
Mα cα

(1 + o(1))

=
(M/2

√
2)α

8cα
(1 + o(1)). (7.3)

So in order to ensure SINR ≥ β, one only needs M = 2
√

2(8cαβ)1/α

for n large.
In summary, we have shown the following theorem.
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Theorem 7.5. There exists a time-sharing scheme such that each
hop on a highway path can transmit once in every M2 time slots,
thus achieving constant rate along each path, where M is a constant
depending only on β and α.

7.4 Routing in three phases

Time slots can be divided into three parts for three phases of transmis-
sion: Draining phase, highway phase, and delivery phase, as designated
in [9].

A. Draining phase

In this phase, data packets from a 45◦-angled square are sent onto the
highway system in one hop. We call each 45◦-angled square a “source”
square, and each such square is regarded as one unit for the drain-
ing phase. Data packets from a source square are sent to the nearest
designated node of a horizontal path in the same horizontal rectan-
gle. Recall that there are

√
n√
2c

/ log
√

n√
2c

horizontal rectangles each with

γ log
√

n√
2c

disjoint paths. So the distance of the first hop of a packet is

at most c
√

2log(
√

n/
√

2c)√
n

.
For the first hop to be successful, one needs to schedule the trans-

missions with intended range c
√

2log(
√

n/
√

2c)√
n

. This can be done in a
similar way as we did for the highway system in the last subsec-
tion. According to Theorem 7.5, and the analysis for (7.3), we know
each source square can achieve a rate of W

M2 bits per second with
M = 2

√
2(8cαβ)1/α ·

(
c
√

2log(
√

n/
√

2c)
)
.

It is easy to show by the union bound that there are at most c2 logn

nodes in each 45◦-angled square, with probability going to one as n goes
to infinity. Thus with probability going to one, each node can achieve
a rate of W

M2c2 logn
= Θ( W

(logn)3 ) bits per second for the draining phase.

B. Highway phase

Once a packet is in the highway system, it will be routed first hori-
zontally then vertically towards its destination. The vertical highway
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path the packet switches to is the vertical path that is nearest to the
destination node’s 45◦-angled square in the same vertical rectangle.

Now we calculate the load of each horizontal highway path. Actually,
since each 45◦-angled square contains no more than c2 logn nodes, each
horizontal rectangle contains no more than

N1 :=

√
2c√
n

log
√

n√
2c

c2/n
· c2 logn =

√
2c · log

√
n√
2c

· logn ·
√

n = Θ(
√

n)

nodes. So, supposing each node generates data at rate λ(n), then each
highway path needs to convey no more than λ(n)N1 bits per second,
which is of order Θ(1) if λ = c1/

√
n. Since each highway path can

accommodate 1/M2 rate, by selecting c1 sufficiently small, no high-
way path will be overloaded.

C. Delivery phase

The delivery phase is exactly symmetric to the Draining phase.
Thus we have shown a scheme that achieves Θ(W/

√
n) bits per

second for every node. �

Remark 7.6. As shown in the scheme, a common power level can be
employed at every node. To achieve Θ(W/

√
n) bits per second for each

node, a three stage transport scheme, with different transmission ranges
in each stage, is used. We also note that, similarly to the discussion at
the end of Section 4.2, Θ(W/

√
n) bits per second is also achievable for

networks under the Generalized Physical Model.

7.5 Notes

This section is based on [9].



8
An Information Theory for Transport Capacity:

The High Attenuation Regime

In Sections 2–7, we have presented results addressing the performance
bounds for wireless networks where the criterion for success of a trans-
mission was modeled either by the Protocol Model, specifying a guard
zone around a receiver or an interference footprint around a transmit-
ter, or by the Physical Model, requiring a minimum SINR for decoding
a signal. Once transmissions among nearby nodes are established, then
nodes in the network can communicate with each other by routing
packets in a multi-hopped fashion. All this is very much modeled on
current technology.

Yet, wireless communication, especially in a network environment,
due to its special nature, allows many more possibilities such as relaying
by amplifying-and-forwarding rather than decoding-and-forwarding,
multiple-access communication, and broadcast, just to name a few.
Some of these strategies are motivated by their utility in some prob-
lems in multi-user information theory [6]. In fact the design space of
strategies is infinite dimensional. Thus the question arises as to what
would be the performance limits for wireless networks if any causal
strategy is allowed. Is it possible that the scaling laws are different
from those of the Protocol and Physical Models?

213
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We address this fundamental question from this section onwards.
We will consider scaling laws of transport capacity from an information
theoretic perspective. As will be seen in the sequel since linear scaling
of the transport capacity is easy to achieve, the challenging problem is
to establish the upper bound on the transport capacity, which is the
focus of this section.

In this section, we first study models of how wireless signals atten-
uate with distance. We suppose that a signal arriving at a distance r

from the source is attenuated by a factor Ge−γr/rδ. Then we define the
transport capacity from an information theoretic point of view. Finally
the main results on the scaling behavior of transport capacity are given
for networks that are spread out, i.e., there is a minimum separation
distance between nodes.

The results to follow show that the scaling behavior of transport
capacity fundamentally depends on how fast signal attenuates with
distance, i.e., how large γ and δ are.

We consider in this section the case when γ > 0 or δ is large – which
we call the high attenuation regime. One can show that then (i) the
transport capacity is upper bounded by a multiple of the total power
if the network is under a total power constraint; and (ii) the transport
capacity scales linearly in n, the network size, if instead the network
is under an individual power constraint. A construction to show linear
growth in transport capacity is shown for networks on a grid.

The result in (i) shows that each bit-meter of transport requires a
minimum positive energy expenditure, thus establishing a fundamental
energy cost for information transport. One can draw an analogy with
more classical results in single-link information theory, where the work
of Shannon shows that there is a linear bound on the throughput in
terms of the received signal power. The result above shows that there
is a similar result for wireless networks in the high attenuation regime
if one replaces received signal power by total transmission power used
over the entire network, and simultaneous replaces throughput by the
metric of transport capacity.

The linear scaling of the transport capacity result in (ii) when
the pathloss exponent is large, agrees with the square-root scaling
law O(

√
An) obtained earlier under the non-information theoretic
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approach. This is because at least Θ(n) square-meters are needed for
a network of n nodes to satisfy the minimum positive distance sepa-
ration constraint, and the transport capacity is Θ(

√
An) for previous

models. This implies that the multi-hop mode of operation is indeed an
order-optimal architecture whenever it realizes this order, as it does in
the best case. This provides a quantitative basis for the choice of the
multi-hop mode of information transfer.

The assumption that any two nodes are separated by a minimum
positive distance reflects physically realistic situations where nodes are
separated by at least some fraction of a wavelength used for communi-
cation.

This section is based on [26]. Some recent improvements will be
briefly discussed in the last subsection, Section 8.6.

The low attenuation regime, when γ = 0 and δ is small, will be dis-
cussed in the next section, where we show that the transport capacity
can scale super-linearly in n, or may even not be bounded by the total
power. In this case, other architectures for information transfer, involv-
ing say multi-user receivers can provide superior scaling laws in com-
parison to the multi-hop mode, as is shown by examples. However, the
results require an unrealistically low path loss exponent, and further
research is needed for realistic values.

8.1 Model and definitions

This subsection presents the network model, signal propagation model,
and an information theoretic definition of transport capacity.

A. Wireless Network

Suppose there are n nodes denoted by i ∈ N := {1,2, · · · ,n}. The dis-
tance between two nodes i, j is denoted as dij . Nodes in the network
are assumed to be separated by a distance of at least dmin > 0, i.e.,
dij ≥ dmin for all i �= j. Note that this implies that as n increases the
network domain must keep growing at least linearly in the number of
nodes.

We suppose that transmissions happen in discrete time. At
time instants t = 1,2, · · · , each node i ∈ N transmits a signal Xi(t).
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After attenuation due to distance, the received signal Yj(t) at node
j is

Yj(t) =
∑
i�=j

Ge−γdij

dδ
ij

Xi(t) + Zj(t),

where {Zj(t)} is iid noise with Gaussian distribution of zero mean and
variance σ2. G > 0 is a constant gain. The parameter δ > 0 is called
the path loss exponent1, while γ ≥ 0 is called the absorption constant.
A positive γ generally prevails except for a vacuum environment [8].

Each node i ∈ N has a power Pi for transmission, meaning∑T
t=1 X2

i (t) ≤ TPi, where T is the transmission horizon. In this sec-
tion we consider two constraints on power consumption:
Total Power Constraint:

∑n
i Pi ≤ Ptotal that can be shared by all the

nodes as they please; or
Individual Power Constraint: Pi ≤ Pind, ∀i ∈ N.

We consider two kinds of networks:

• Linear Networks: n nodes are located on a straight line; and
• Planar Networks: n nodes are located on a plane.

The reason to consider line networks is because the analysis is easier
to understand, and they can be used to model networks such as those
formed by cars in a highway.

Two special networks of particular interests are the regular linear
network, in which nodes are equally spaced apart on a straight line, and
the regular planar network, in which nodes are located on a

√
n ×

√
n

integer lattice grid.

B. Definitions of Feasible Rates and Transport Capacity

For a wireless network of n nodes, we now define the notion of a feasi-
ble information rate vector (Rij , i, j ∈ N) as is standard in information
theory [6]. Note that Rij could be zero. For notation convenience we
define Rii = 0, ∀i ∈ N.

1 Compared with the power loss exponent α used in Sections 4, 6 and 7, a path loss exponent
δ corresponds to α = 2δ.
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Definition 8.1. A (Rij , i, j ∈ N;T ) code with error probability P
(T )
e

consists of the following.

• Message Selection: With Wij denoting the message to be sent
from node i to node j, we assume that all the messages {Wij}
are independent, and uniformly distributed over their respec-
tive ranges {1,2, . . . ,2TRij}.

• Signaling Scheme: The symbol Xi(t), for t ≥ 1, that node i

sends out at time t, can depend in any causal manner on its
own outgoing messages Wi := (Wij , j ∈ N), as well as the val-
ues of its past received symbols Y t

i := (Yi(1),Yi(2), · · · ,Yi(t))
for t ≥ 1; define Y 0

i := φ. That is, we allow a set of encod-
ing functions fi,t such that, for all i ∈ N, t ≥ 1, Xi(t) = fi,t =
fi,t(Y t−1

i ,Wi).
• Decoders: For each node j, there is a decoding function

Ŵij(Y T
j ,Wj), i ∈ N, by which it tries to recover the message

intended for it from node i.
The Error Probability is defined as P

(T )
e := Prob((Ŵij , i, j ∈

N) �= (Wij , i, j ∈ N)).

Definition 8.2. Feasible rate vector with power constraint: A rate
vector (Rij , i, j ∈ N) is said to be feasible with total power constraint
Ptotal, if there exists a sequence of ((Rij , i, j ∈ N),T ) codes such
that 1/T

∑T
t=1
∑n

i=1 Xi(t)2 ≤ Ptotal, a.s., with P
(T )
e → 0, as T → ∞.

If instead the power constraint is such that 1/T
∑T

t=1 Xi(t)2 ≤ Pind,
∀i ∈ N, a.s., as T → ∞, the rate vector is said to be feasible with indi-
vidual power constraint Pind.

We now introduce the information theoretic definition of transport
capacity.

Definition 8.3. An n-node network’s transport capacity is defined as

CT (n) := sup
(Rij ,i,j∈N) feasible

∑
ij

Rij · dij ,

where dij is the distance between nodes i and j.
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8.2 Main results in high attenuation regime

We present results showing that, when γ > 0 or δ is large, then the
transport capacity is upper bounded by a multiple of the total power.
This implies that it scales linearly in n when the nodes are subject to
individual power constraints.

First we consider planar networks.

A. Planar Networks

For the case of total power constraint, we have the following bound on
transport capacity.

Theorem 8.4. If γ > 0 or δ > 3, then for any planar network we have
CT (n) ≤ c1(γ,δ,dmin)G2

σ2 · Ptotal, where

c1(γ,δ,dmin) :=


22δ+7 loge

γ2dmin
2δ+1

e−γdmin/2(2 − e−γdmin/2)
(1 − e−γdmin/2)

if γ > 0,

22δ+5(3δ − 8) loge

(δ − 2)2(δ − 3)dmin
2δ−1 if γ = 0 and δ > 3.

(8.1)

It follows immediately from the above theorem that the transport
capacity under the individual power constraint cannot grow faster than
linear in n.

Theorem 8.5. If γ > 0 or δ > 3, we have CT (n) ≤ c1(γ,δ,dmin)G2Pind

σ2 ·
n for any planar network.

Theorem 8.5 gives an upper bound for the transport capacity. On
the other hand, one can show the linear growth is indeed achievable for
regular networks.

Theorem 8.6. Suppose γ > 0 or δ > 1, and each node is sub-
ject to an individual power constraint Pind. Then a regular planar
network of n nodes (distributed on a

√
n ×

√
n grid) can achieve

CT (n) ≥ S
(

e−2γG2Pind
c3(γ,δ)Pind+σ2

)
· n, where S(·) is the Shannon function
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1
2 log(1 + x), and

c3(γ,δ) :=


4(1 + 4γ)e−2γ − 4e−4γ

2γ(1 − e−2γ)
if γ > 0,

16δ2 + (2π − 16)δ − π

(δ − 1)(2δ − 1)
if γ = 0 and δ > 1.

(8.2)

B. Linear Networks

We have the following analogous results for linear networks.

Theorem 8.7. If γ > 0 or δ > 2, and the network is subject to a total
power constraint, then CT (n) ≤ c2(γ,δ,dmin)G2

σ2 · Ptotal, where

c2(γ,δ,dmin) :=


2e−2γdmin loge

(1 − e−γdmin)2(1 − e−2γdmin)dmin
2δ−1 if γ > 0,

2δ(δ2 − δ − 1) loge

(δ − 1)2(δ − 2)dmin
2δ−1 , if γ = 0 and δ > 2.

(8.3)

Theorem 8.8. If either γ > 0 or δ > 2, and the network is subject to
an individual power constraint, we have CT (n) ≤ c2(γ,δ,dmin)G2Pind

σ2 · n.

In the following subsections we will present the key ideas of the
proofs for the results presented in this subsection. The interested reader
is referred to [26] for complete proofs.

8.3 A max-flow-min-cut lemma relating rates with
received power

This subsection presents a lemma that bounds the information flow
from one set of nodes S to the rest of the network N\S by a function
of the received power in N\S that is received from signals originating
in S.

Lemma 8.9. [Max-flow min-cut bound] Suppose receptions
in a wireless communication network are modeled by Yj(t) =∑

i�=j αijXi(t) + Zj(t), j ∈ N, where: (i) {αij} is a sequence of known
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deterministic numbers. (ii) {Zj(t)} is an i.i.d. Gaussian noise process
independent of the signal process {Xi(t)}, and E|Zj(t)|2 = σ2.

If {((Rij , i, j ∈ N);T,P
(T )
e ), T ≥ 1} is a sequence of codebooks, then

for any subset S of N, we have

RSD ≤ 1
T

+ RSDP (T )
e +

1
T

T∑
t=1

∑
j∈N\S

1
2

log(1 +
E|
∑

i∈S αijXi(t)|2
σ2 ),

(8.4)

where N\S denotes those nodes in N but not in S, RSD :=∑
i∈S,j∈N\S Rij , and P

(T )
e is the probability of decoding error.

Proof. Let D := N\S be the set of destination nodes, and let Wij :=
{1,2, . . . ,2TRij} denote the message set from node i to j. We use the
following notation:

Uj(t) :=
∑
i∈S

αijXi(t), j ∈ D;

Vj(t) := Uj(t) + Zj(t);

WSD := {Wij : i ∈ S,j ∈ D};

WD := {Wij : i ∈ D,j ∈ N};

Wi := {Wij : j ∈ N}.

Let VD(t) := {Vj(t) : j ∈ D}, V t
D := {VD(k) : k = 1, . . . , t}, and similarly

for Y , U , Z.
First we want to show that WSD → {V T

D ,WD} → {Y T
D ,WD} forms a

Markov chain. This can be done by showing that Y T
D is a deterministic

function of (V T
D ,WD). Actually, this can be seen by noticing that for

any j ∈ D, 2 ≤ t ≤ T ,

Yj(t) = Vj(t) +
∑

i∈D,i�=j

αijXi(t)

= Vj(t) +
∑

i∈D,i�=j

αijfi,t(Y t−1
i ,Wi), and

Yj(1) = Vj(1) +
∑

i∈D,i�=j

αijfi,1(Wi).
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Now by Fano’s Lemma and the property of a Markov chain, we have

H(WSD|V T
D ,WD) ≤ H(WSD|Y T

D ,WD) ≤ 1 + TRSDP (T )
e .

Thus,

TRSD

= H(WSD) = I(WSD;V T
D ,WD) + H(WSD|V T

D ,WD)
≤ I(WSD;V T

D ,WD) + 1 + TRSDP
(T )
e

= I(WSD;WD) + I(WSD;V T
D |WD) + 1 + TRSDP

(T )
e

= 0 + h(V T
D |WD) − h(V T

D |WSD,WD) + 1 + TRSDP
(T )
e

≤ h(V T
D ) − h(V T

D |WSD,WD) + 1 + TRSDP
(T )
e ,

with

h(V T
D |WSD,WD)

=
T∑

t=1

h(VD(t)|VD(1), . . . ,VD(t − 1),WSD,WD)

≥
T∑

t=1

h(VD(t)|VD(1), . . . ,VD(t − 1),ΓS(t),WSD,WD)

=
T∑

t=1

h(VD(t)|ΓS(t)) ≥
T∑

t=1

h(VD(t)|UD(t)).

Hence,

TRSD

≤ h(V T
D ) −

T∑
t=1

h(VD(t)|UD(t)) + 1 + TRSDP (T )
e

= h(V T
D ) −

T∑
t=1

∑
j∈D

h(Zj(t)) + 1 + TRSDP (T )
e

≤
T∑

t=1

∑
j∈D

h(Vj(t)) −
T∑

t=1

∑
j∈D

1
2

log(πeσ2) + 1 + TRSDP (T )
e
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≤
T∑

t=1

∑
j∈D

(
1
2

log(πe(E|Uj(t)|2 + σ2)) − 1
2

log(πeσ2)) + 1 + TRSDP (T )
e

=
T∑

t=1

∑
j∈D

1
2

log(1 +
E|Uj(t)|2

σ2 ) + 1 + TRSDP (T )
e ,

where the last inequality comes from the fact that Gaussian distribution
maximizes entropy for given covariance; see Lemma 2 in [23].

Given that the above lemma and noticing log(1 + x) ≤ x loge,
∀x > 0, the following corollary is immediate.

Corollary 8.10. If (Rij , i, j ∈ N) is a feasible rate vector, then for
any subset S ∈ N,

RSD =
∑

i∈S,j∈D

Rij ≤ loge

2σ2 · liminf
T→∞

1
T

T∑
t=1

∑
i∈S

E

∑
j∈D

αijXj(t)

2

,

where D := N\S.

8.4 Upper bounds for linear and planar networks

In this subsection we present the proof of Theorem 8.7, i.e., that the
transport capacity is bounded by a multiple of the total power for linear
networks, whenever γ > 0 or δ > 2. Since the idea to prove Theorem 8.5,
the planar case, proceeds similarly, we refer the reader to [26] for it.
Moreover, we only show the proof for the case when γ = 0. For γ > 0,
the proof is similar.

Proof of Theorem 8.7: Let aidmin denote the coordinate of the
node i, and let RS denote the sum of the rates of the source desti-
nation pairs with source nodes in set S, and ending in the rest of the
network, N\S. Applying Corollary 8.10 to the subsets:

N −
q = {i ∈ N : ai ≤ q}, and

N+
q = {i ∈ N : ai > q}, ∀q ∈ Z := {integer},

(8.5)
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we get for any q,

2σ2

loge
· RN −

q
≤ liminfT→∞

1
T

T∑
t=1

∑
i∈N −

q

E

 ∑
j /∈N −

q

Xj(t)
(aj − ai)δdδ

min

2

,(8.6)

2σ2

loge
· RN+

q
≤ liminfT→∞

1
T

T∑
t=1

∑
i∈N+

q

E

 ∑
j /∈N+

q

Xj(t)
(ai − aj)δdδ

min

2

.(8.7)

Suppose a rate Rij is supported over a distance dij towards the +∞
direction. Consider the sequence {RN −

q
}, for q from −∞ to +∞. By

definition, the rate Rij must be counted at least �dij/dmin� times among
the sequence. By symmetry, a left travelling rate must be counted in
{RN+

q
} similarly. Thus we get∑

i,j∈N

Rij · dij ≤ 2dmin

∑
i,j∈N

Rij · �dij/dmin�

≤ 2dmin

+∞∑
q=−∞

RN −
q

+ 2dmin

+∞∑
q=−∞

RN+
q

. (8.8)

Now we show that
+∞∑

q=−∞
RN −

q
≤ c2(γ,δ,dmin)

4dminσ2 Ptotal, (8.9)

and by (8.6), we will then only need to show that

1
T

∑T
t=1
∑+∞

q=−∞
∑

i∈N −
q

E

(∑
j �∈N −

q

Xj(t)
(aj − ai)δ

)2

≤ c2(γ,δ,dmin)dmin
2δ−1

2loge
Ptotal.

(8.10)

The intuition is that the received power is no more than the transmitted
power.

Since Xj(t) satisfies

1
T

T∑
t=1

∑
j∈N

X2
j (t) ≤ Ptotal, a.s., (8.11)
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we only need to prove that for any t,

∑+∞
q=−∞

∑
i∈N −

q

(∑
j �∈N −

q

Xj(t)
(aj − ai)δ

)2

≤ c2(γ,δ,dmin)dmin
2δ−1

2loge

∑
i∈N

X2
i (t).

(8.12)

First, we observe that the left hand side (L.H.S.) of (8.12) is a sum-
mation of infinite terms of the form βjkXj(t)Xk(t). If every Xj(t)Xk(t)

is replaced with the larger value
1
2
(X2

j (t) + X2
k(t)), it is easy to see that

L.H.S. of (8.12)

≤
∑

k∈N

	ak
−1∑
q=−∞

∑
i∈N −

q

∑
j �∈N −

q

1
(aj − ai)δ(ak − ai)δ

X2
k(t).

This would imply (8.12) if for any k ∈ N ,

∑	ak
−1
q=−∞

∑
i∈N −

q

∑
j �∈N −

q

1
(aj − ai)δ(ak − ai)δ

≤ c2(γ,δ,dmin)dmin
2δ−1

2loge
.

(8.13)

This can be established as follows.
Let aq := minj �∈N −

q
aj , and note that mini�=j |ai − aj | ≥ 1. Then

we have

L.H.S. of (8.13) ≤
	ak
−1∑
q=−∞

∑
i∈N −

q

∞∑
l=0

1
(l + aq − ai)δ

1
(ak − ai)δ

≤
	ak
−1∑
q=−∞

∑
i∈N −

q

δ − 1 + aq − ai

(δ − 1)(aq − ai)δ

1
(ak − ai)δ

=
∑

{i:ai<ak}

	ak
−1∑
q=	ai


[
1

(aq − ai)δ
+

1
(δ − 1)(aq − ai)δ−1

]
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× 1
(ak − ai)δ

≤
∑

{i:ai<ak}

[ ∞∑
l=1

1
lδ

+
1

δ − 1

∞∑
l=1

1
lδ−1

]
1

(ak − ai)δ

≤ δ3 − δ2 − δ

(δ − 1)2(δ − 2)
=

c2(γ,δ,dmin)dmin
2δ−1

2loge
, (8.14)

where we have used the fact that for any real a > 0 and β > 1,
+∞∑
l=0

1
(l + a)β

≤ 1
aβ

+
∫ ∞

0

1
(a + x)β

dx ≤ β − 1 + a

(β − 1)aβ
. (8.15)

Hence (8.12) is established, and thus (8.9) follows. Similarly, we have

+∞∑
q=−∞

RN+
q

≤ c2(γ,δ,dmin)
4dminσ2 Ptotal. (8.16)

Finally, combining (8.8), (8.9) and (8.16), the proof for Theorem 8.7
is completed. �

8.5 Achieving linear growth using regular networks

In this subsection, we show that when δ > 1, a regular network under
individual power constraint can achieve Θ(n) transport capacity. This
will prove Theorem 8.6. We only consider the case where γ = 0 and
δ > 1.

Consider a regular planar network with n nodes such that two neigh-
boring nodes are one meter apart from each other. Each node i ∈ N is
a source, and it selects one of its 4 nearest neighbors as its only desti-
nation node.

Now each node independently generates its codebook according to
a Gaussian distribution with variance P = Pind − ε, where ε > 0.

After the block of T transmissions, every destination node decodes
its source’s signal, treating all the other transmissions as Gaussian
noise. Thus, if we can show ∀j ∈ N,

c3(γ,δ)P ≥
∑

i∈N, i�=j, i is not j’s source

P

d2δ
ij

, (8.17)
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i.e., c3(γ,δ)P is an upper bound for interference, then any rate R0

satisfying the following is achievable for every source–destination pair:

R0 <
1
2

log
(

1 +
P

c3(γ,δ)P + σ2

)
.

This bound can be shown as follows.∑
i∈N, i�=j, i is not j’s source

P

d2δ
ij

≤ 4 ×
(

2
∞∑
i=1

1
i2δ

+
∫ ∞

1

∫ ∞

0

1
(x2 + y2)δ

dxdy

)
P

≤ 4 ×
(

2 · 2δ

2δ − 1
+

π

4δ − 4

)
P

≤ 16δ2 + (2π − 16)δ − π

(δ − 1)(2δ − 1)
P

≤ c3(γ,δ)P.

8.6 Notes

This section is based on [26]. In [27] it has recently been shown that, for
the transport capacity to be upper bounded by a multiple of the total
power, and therefore to be linear in the network size under individual
power constraint, δ > 3/2 suffices for linear networks, while δ > 5/2
suffices for planar networks. The effect of random phases of channels
is also discussed in the same paper. The linear growth rate of trans-
port capacity for an improved bound on δ, and a generalized transport
capacity are also examined in [4].



9
An Information Theory for Transport Capacity:

The Low Attenuation Regime

This section continues with the treatment of wireless network informa-
tion theory from the last section. We now address the scaling behavior
of transport capacity when the attenuation is slow – the low attenuation
regime.

In this low attenuation regime, by a coherent relaying and inter-
ference subtraction (CRIS) strategy, super-linear growth in transport
capacity can be achieved for networks under the individual power con-
straint. The ratio of transport capacity to total power can also be
unbounded. This result shows that there can be a fundamental connec-
tion between the attenuation properties of the medium and the amount
of information that can be transported. In particular the architecture
for information transport in wireless networks with very low attenua-
tion can be quite different from what is adequate when the attenuation
is high. At present however, the results presented below are only for
unrealistically low attenuations, and further research is need to bridge
the gap with the high attenuation case.

The same model and definitions as in last section are adopted here.
In particular, we still consider both linear and planar networks with a
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minimum separation distance dmin among nodes. The signal is assumed
to attenuate with distance by a factor of G/rδ.

We first present the main results. Then we present the coherent
relaying and interference subtraction (CRIS) scheme. The application
of this scheme to achieve super-linear growth in transport capacity will
be shown in Section 9.3. We present the major steps of the proofs; for
complete proofs we refer the reader to [26].

9.1 Main results in low attenuation regime

When there is no absorption (γ = 0) and δ is small, one finds results
in great contrast to the high attenuation regime. In some cases, the
transport capacity cannot be upper bounded by a finite multiple of
the total power. In some other cases, the transport capacity even scale
super-linearly in n under the individual power constraint.

These results are attained by a strategy of coherent relaying with
interference subtraction (CRIS). For a source–destination pair (s,d),
the n nodes are divided into a sequence of groups, G0 → G1 → ·· ·
→ Gm, such that G0 = {s} and Gm = {d}. Groups with higher numbers
will be said to be more “downstream,” though they are not necessarily
closer to the destination. Nodes in group l will dedicate a portion of
their powers to coherently transmit for the benefit of nodes in their
downstream nodes. During decoding, each node first subtracts from its
received signal the already known portion of the superposed component
coming from downstream nodes, and then decodes the new information.

Theorem 9.1. Suppose γ = 0, i.e., there is no absorption. Then, for
planar networks under the total power constraint Ptotal:

i) If δ < 3/2, then any arbitrarily large transport capacity can
be supported in a regular planar network with large enough
n, using the CRIS strategy.

ii) If δ < 1, then CRIS can support a fixed rate Rmin > 0 for any
single source–destination pair in any regular planar network,
irrespective of the distance between them.

The following is the corresponding result for regular linear networks.
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Theorem 9.2. When γ = 0, for linear networks under the total power
constraint Ptotal:

i) If δ < 1, then any arbitrarily large transport capacity can be
supported in a regular linear network with large enough n

using the CRIS strategy.
ii) If δ < 1/2, then CRIS can support a fixed rate Rmin > 0 for

any single source–destination pair in any regular planar net-
work, irrespective of the distance between them.

For the scaling law of transport capacity under the individual power
constraint we have:

Theorem 9.3. When γ = 0,1/2 < δ < 1, and each node is subject to
a individual power constraint, a super-linear Θ(nθ) bit-meters/second
scaling of the transport capacity is feasible for any θ ∈ (1,1/δ), for some
linear networks.

9.1.1 Achievable rate by CRIS

The results in the low attenuation regime are based on the idea of
coherent multistage relaying with interference subtraction. This strat-
egy is of independent interest and we will present in Section 9.2. The
achieved rate is described in the following setup.

Theorem 9.4. Consider the following Gaussian Relay Network:
There are M + 1 nodes {0,1, · · · ,M} with node 0 as the source node,
and node M as its end destination node. Nodes {1,2, · · · ,M − 1} are
there to help the source node 0 to send information to the destina-
tion node M . Node 0 can only send, and node M can only listen. At
each node j, the received signal is Yj(t) =

∑
i�=j αijXi(t) + Nj(t), with

Nj(t) being an independent Normal(0,σ2) random variable. Then any
rate satisfying the following is achievable by CRIS from node 0 to M :

R < min
1≤j≤M

S

 1
σ2

j∑
k=1

(
k−1∑
i=0

αij

√
Pik

)2 , (9.1)
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where {Pik} is any allocation of powers that satisfies Pik ≥ 0 and∑M
k=i+1 Pik ≤ Pi.

A simple generalization using groups of nodes to function as a coher-
ent relay gives the following result.

Theorem 9.5. Consider the following generalized Gaussian multiple
relay network. There are M + 1 groups of nodes sequentially denoted
by N0,N1, . . . ,NM with N0 = {0} as the source, NM = {M} as the
destination, and the other M − 1 groups as M − 1 stages of relay.
Suppose there are ni nodes in Group Ni, i ∈ {0,1, . . . ,M}, and the
power constraint for each node in Ni is Pi/ni ≥ 0. Then any rate R

satisfying the following is achievable from node 0 to M :

R < min
1≤j≤M

S

 1
σ2

j∑
k=1

(
k−1∑
i=0

αNiNj

√
Pik/ni · ni

)2 , (9.2)

where Pik ≥ 0 satisfies
∑M

k=i+1 Pik ≤ Pi, and αNiNj := min{αk� : k ∈
Ni,  ∈ Nj}, i, j ∈ {0,1, . . . ,M}.

9.2 Method of coherent relaying with interference
subtraction

In this subsection we present the strategy used in achieving the sin-
gle source–destination rate in Theorem 9.4. Let us denote by S(x) :=
1/2log(1 + x), Shannon’s function.

We consider M + 1 nodes with source node 0, relay nodes
{1,2, · · · ,M − 1}, and destination node M , each with a power bud-
get Pi, 0 ≤ i ≤ M − 1. The source node can only transmit, and the
destination node can only listen. The received signal at node j at time
t is Yj(t) =

∑
i�=j αijXi(t) + Zj(t), with {Zj(t)} being a sequence of iid,

zero mean, Gaussian noise with variance σ2 > 0.
The basic idea behind CRIS is that each node divides its energy into

several parts used for helping different downstream nodes in forwarding
messages to M . Different nodes helping the same downstream node will
combine their energy coherently. A node while decoding can subtract
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from its received signal the part emitted by downstream nodes, since it
has already successfully decoded any messages that they know. (Note
that the channel is assumed to be perfectly known.)

First we illustrate the strategy for a network of three nodes as in
Figure 9.1. Then we will formally present the general strategy. The
interested reader is referred to [26] for the proofs.

Consider the network in Figure 9.1 consisting of source s, relay r

and destination d. Let αsr, αsd and αrd denote the corresponding signal
attenuation factors. The whole transmission time is divided equally into
blocks of the same size, say T0. In each block (except the first and the
last), node s divides its power Ps into two parts, θPs and (1 − θ)Ps

with 0 ≤ θ ≤ 1. These are used for different purposes: (i) The part θPs

is used to “inform” relay r so that it can help coherently in the next
block. By Shannon’s formula any rate R satisfying

R < S
(

α2
srθPs

σ2

)
, (9.3)

is achievable for this task. (ii) The part (1 − θ)Ps is used to “collab-
orate” with relay r, which will transmit coherently with s to send a
signal to receiver d, using its full power Pr. Note that the collaboration
information has already arrived at r at the end of the previous block.

At the end of this block, what node d receives is the addition of three
components: (a) the signal due to the coherent cooperation between

s and r with power
(
αsd

√
(1 − θ)Ps + αrd

√
Pr

)2
; (b) the “bonus” sig-

nal sent by s intended mainly for r for preparing the next-block coop-
eration, with power α2

sdθPs; and (c) the noise with power σ2.
Now, the decoding procedure for node d is as follows. At the end of

each block, it decodes based on signals from both this block and the
previous one. The information bearing parts for this decoding are: the

r

d
s

Fig. 9.1 The single relay channel.
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first part (a) of this block, and the second part (b) of the previous block.
Note that they both represent the same information. Note also that the
first part in the previous block can be removed before decoding, since
it becomes known after the decoding at the end of the previous block.
The following rate is thus achievable:

R < S


(
αsd

√
(1 − θ)Ps + αrd

√
Pr

)2

α2
sdθPs + σ2

 + S
(

α2
sdθPs

σ2

)

= S
(

α2
sdPs + α2

rdPr + 2αsdαrd

√
(1 − θ)PsPr

σ2

)
.

Together with the constraint (9.3), this leads to the following end-to-
end achievable rate

R < max
0≤θ≤1

min
{

S
(

α2
srθPs

σ2

)
,

S
(

α2
sdPs + α2

rdPr + 2αsdαrd

√
(1 − θ)PsPr

σ2

)}
. (9.4)

The scheme here is different from the scheme in [7]. Here messages
are not partitioned into cells. For decoding, the destination waits until it
has received all the relevant signals, and it then determines the message
directly once and for all.

After this illustration of the basic idea for a three-node relay net-
work, we now present the scheme for a network of M + 1 nodes.

The CRIS Scheme

The transmission consists B blocks, each of T slots. A sequence of B −
M + 1 indices, wb ∈ {1, . . . ,2TR}, b = 1,2, . . . ,B − M + 1 will be sent
over in a total of TB slots. (Note that as B → ∞, the rate TR(B −
M + 1)/TB is arbitrarily close to R for any T .)

9.2.1 Generation of codebooks

Randomly generate M2 matrices Xk(b0), for k = 1, . . . ,M , and b0 =
1, . . . ,M , each of size 2TR × T , with every element independently cho-
sen with Gaussian distribution N(0,1 − ε1). These are the codebooks.
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In the same block, different nodes use independent codewords from
different codebooks. Since it takes M blocks to transmit one com-
plete message, every node is assigned M independent codebooks. The
total number of codebooks needed is M2 since there are M nodes.
The M2 matrices are revealed to all the M + 1 nodes. Let Xk(b) :=
Xk(b mod M), b = 1,2, . . . ,B. Denote by xk(b,w) the w-th row of the
matrix Xk(b), for w ∈ {1, . . . ,2TR}. It denotes the w-th codeword.

9.2.2 Encoding

At the beginning of each block b ∈ {1, . . . ,B}, every node i ∈
{0, . . . ,M − 1} has estimates (see the sequel) ŵb−k+1,i of wb−k+1, k ≥
i + 1 (with ŵb−k+1,0 = wb−k+1) and sends the following vector of length
T in the block:

�Xi(b) :=
M∑

k=i+1

√
Pikxk(b, ŵb−k+1,i).

We set

ŵb1,i := wb1 := 0 for any b1 ≤ 0, and xk(b,0) := 0. (9.5)

Every node k ∈ {1, . . . ,M} thus receives the vector:

�Yk(b) =
∑

0≤i≤M−1
i�=k

αik
�Xi(b) + �Zk(b)

=
∑

0≤i≤M−1
i�=k

M∑
l=i+1

αik

√
Pilxl(b, ŵb−l+1,i) + �Zk(b)

=

 k∑
l=1

l−1∑
i=0

+
M∑

l=k+1

∑
0≤i≤l−1

i�=k

αik

√
Pilxl(b, ŵb−l+1,i) + �Zk(b).

Let

�̂Y k(b) := �Yk(b) −
M∑

l=k+1

∑
0≤i≤l−1

i�=k

αik

√
Pil xl(b, ŵb−l+1,k) (9.6)

serve as an estimate by node k of
∑k

l=1
∑l−1

i=0 αik

√
Pilxl(b, ŵb−l+1,i).
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9.2.3 Decoding

We use joint-typical set decoding. The following definitions are
standard.

Definition 9.6. The set A
(T )
ε of jointly typical sequences {(xT ,yT )}

with respect to the joint density function f(x,y) is the set of
T -sequences with empirical entropies ε-close to the true entropies, i.e.,

A(T )
ε =

{
(xT ,yT ) ∈ R

T × R
T :∣∣∣∣− 1

T
logf(xT ) − h(X)

∣∣∣∣ < ε,∣∣∣∣− 1
T

logf(yT ) − h(Y )
∣∣∣∣ < ε,∣∣∣∣− 1

T
logf(xT ,yT ) − h(X,Y )

∣∣∣∣ < ε

}
,

where f(xT ,yT ) =
∏T

i=1 f(xi,yi).

Definition 9.7. A
(T )
ε (P,N) denotes the set A

(T )
ε with respect to the

joint density function

f(x,y) = gP (x)gN (y − x) = 1√
2πP

exp
(
− x2

2P

)
· 1√

2πN
exp

(
− (y−x)2

2N

)
.

Given these definitions, we now introduce the decoding procedure.
At the end of each block b ∈ {1, . . . ,B}, every node k ∈ {1, . . . ,M}

(for b − k + 1 ≥ 1) declares ŵb−k+1,k = w, if w is the unique value in
{1, . . . ,2TR} such that in all the blocks b − j,j = 0,1, . . . ,k − 1:{

k−j−1∑
i=0

αik

√
Pi,k−j xk−j(b − j,w), �̂Y k(b − j)

−
k∑

l=k−j+1

l−1∑
i=0

αik

√
Pil xl(b − j, ŵb−j−l+1,k)


∈ A(T )

ε (P̄k,j ,Nk,j),
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where

P̄k,j :=

(
k−j−1∑

i=0

αik

√
Pi,k−j

)2

(1 − ε1),

Nk,j :=
k−j−1∑

l=1

(
l−1∑
i=0

αik

√
Pil

)2

(1 − ε1) + σ2.

Otherwise, if an unique w as above does not exist, an error is declared
and ŵb−k+1,k is set to 0.

9.3 Achieving super-linear growth in low attenuation regime

In this subsection we show that one can apply the CRIS strategy, pre-
sented in the previous subsection, to achieve super-linear growth of
transport capacity when attenuation is slow, i.e., Theorems 9.1 and
9.2. The key steps for proving Theorem 9.1 are presented. The inter-
ested reader is refereed to [26] for the complete proofs.

Recall the following Theorem 9.1.

Theorem 9.1 Suppose γ = 0. Then, for planar networks under the
total power constraint Ptotal:

i) If δ < 3/2, then any arbitrarily large transport capacity can
be supported in a regular planar network with large enough
n, using the CRIS strategy.

ii) If δ < 1, then CRIS can support a fixed rate Rmin > 0 for any
single source–destination pair in any regular planar network,
irrespective of the distance between them.

Proof. Consider one source–destination pair where the source node s is
located at (0,0) and the destination node d is located at (mq,0), with
q a positive integer to be determined.

We need the cooperation of m − 1 groups of relay nodes: Group
Ni consists of ni nodes in a neighborhood of the node (iq,0), for i =
1, . . . ,m − 1, with N0 = {s}, n0 = 1. Let the ni nodes in Group Ni use
same power Pik = P

(k−i)λkµ , for 0 ≤ i < k ≤ n, where λ > 1,µ > 1 are
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two constants to be determined later, and

P :=
(λ − 1)(µ − 1)

λµ
Ptotal.

It is easy to verify that the total power constraint is satisfied.
Now by Theorem 9.5 (pp. 230), the following rate is achievable

R < min
1≤j≤r

S

 1
σ2

j∑
k=1

(
k−1∑
i=0

√
Pik/ni · ni

rδ
NiNj

)2 , (9.7)

where rNiNj is the maximum distance between any node in Group Ni

and any node in Group Nj .
For any i = 1,2, . . . ,m − 1, let Group Ni be the set of nodes

located at: {(u,v) : iq ≤ u ≤ iq + iq−1 − 1,−iq−1 ≤ v ≤ iq−1}. It is easy
to check that these groups are disjoint from each other and ni >

i2(q−1). Furthermore, for any 0 ≤ i < j < m, dij < jq − iq + iq−1 +
jq−1 + jq−1 < 3jq. Hence by (9.7), the following rate is achievable:

R < min
1≤j≤r

S

 1
σ2

j∑
k=1

(
k−1∑
i=0

√
Pik · iq−1

3δjqδ

)2 . (9.8)

For 1 + 2q − λ − µ > 0, one can show (details in [26]) that the right
hand side of (9.8) is lower bounded by Ω(j1+2q−λ−µ−2qδ).

Now we proceed with two cases.
Case 1. δ < 1.

Choose q such that 1 + 2q − λ − µ − 2qδ > 0. Then there exists
P > 0 such that for any j,

j∑
k=1

(
k−1∑
i=0

√
P · iq−1

(k − i)λ/2kµ/23δjqδ

)2

≥ P .

Then by (9.8), for any m, any R < S( P
σ2 ) is achievable. Without loss

of generality, this means that any R < S( P
σ2 ) is achievable with power

constraint Ptotal for any single source–destination pair. Furthermore,
R · mq is an achievable network transport with power constraint Ptotal,
which tends to infinity as m → ∞.
Case 2. 1 ≤ δ < 3

2 .
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In this case, choose q such that 1 + 3q − λ − µ − 2qδ > 0. Then we
have

mq min
1≤j≤m

S

 1
σ2

j∑
k=1

(
k−1∑
i=0

√
P · iq−1

(k − i)λ/2kµ/23δjqδ

)2
= Ω(m1+3q−λ−µ−2qδ) → ∞, as m → ∞.

This means that an arbitrarily large transport capacity is achievable
with a fixed total power constraint Ptotal.

9.4 Notes

This section is based on [26].



10
The Transport Capacity of Wireless Networks

with Fading

In Sections 8 and 9 we have studied the transport capacity of wireless
networks from an information theoretic point of view, addressing the
fundamental scaling behavior of wireless networks, and attempting to
elucidate the order optimal architectures.

However, a very important issue in practical wireless networks, and
unmodeled in these sections, is the presence of fading [22]. Fading is
caused by the fact that wireless signals, in the form of electromagnetic
waves, travel to a receiver along different paths because of scattering,
shadowing, reflections, etc., [22, 5]. A fundamental question therefore
is: How does fading influence the performance of wireless networks?
This is the question addressed in this section.

We begin with a short discussion of multi-path fading in wire-
less communications. A baseband model incorporating fading and the
attenuation due to distance will be presented, which can be special-
ized to various common fading models in the literature. The model in
Sections 8 and 9 will be seen to be a special case.

Then the main results on the scaling behavior of transport capacity
in high attenuation regime are presented. Specifically, if the fading is
“power bounded,” then even if the channel state information (CSI)

238
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is known before transmission to every node, the transport capacity is
shown to be still upper bounded by a linear function of the network
size. On the other hand, if the fading is independent from time to
time, then even if the CSI is unknown to every node, a constructive
scheme is provided to achieve linear growth of the transport capacity.
Interestingly, peaky signalling and random time-scheduling emerge as
strategies of interest to combat unknown fading. These results suggest
that the scaling laws and order optimal architectures are not affected by
the presence or absence of fading, be it slow or fast, and be it frequency
flat or frequency selective.

10.1 Network under fading: model and definitions

We begin with a short discussion on fading channels, and then present
the model under fading.

A. Fading Channels

In wireless communications, due to the physical environment, for exam-
ple walls and trees, the electromagnetic waves travel to receivers along a
multitude of paths. Along each path, the signal could encounter reflec-
tion, delay and path loss, which vary with time.

Fading can be characterized into four different types by comparing
the frequency bandwidth used and how fast the environment changes.

First one can compare the signal bandwidth W with the chan-
nel coherence bandwidth Bcoh. Intuitively, Bcoh characterizes how far
apart two different sinusoids with frequencies f1 and f2 have to be to
face significantly different fading gains. If the bandwidth W of the sig-
nal is much smaller than the channel coherence bandwidth Bcoh, i.e.,
W � Bcoh, then the channel gain is almost the same for different fre-
quency components in the signal. In other words, the receiver cannot
distinguish the paths, and thus the channel only has a multiplicative
effect on the signal. This situation is called frequency non-selective or
flat fading. If on the other hand W ≥ Bcoh, different frequencies fade
differently. The receiver can now get several resolvable paths, and such
a channel is called frequency selective. Note that in this situation, inter-
symbol interference is introduced.



240 The Transport Capacity of Wireless Networks with Fading

One can also characterize a fading channel by comparing the time
duration Ts of a signal symbol with the channel coherence time Tcoh.
A channel is called slow fading if Ts � Tcoh, meaning the channel gain is
constant during transmission. If otherwise Ts ≥ Tcoh, the channel gain
is varying during transmission, and this is called fast fading.

A common discrete model for a point-to-point fading channel is
the tapped-delay baseband model, in which the received signal Y (t) is
given by

Y (t) =
L−1∑
l=0

Hl(t)X(t − l), t = 1,2, · · · , (10.1)

where L is the number of paths and Hl(t) is the path gain for the
l-th path.

The subject of fading channels has been an active research field for
decades; the above characterization can be found in various references,
for example in [22, 5, 25].

B. Network Model under Fading (L = ∞)

Based on (10.1) and the model in Section 8, we consider the following
model for wireless networks in this section.

Consider a network consisting of n nodes in N := {1,2, . . . ,n},
located on the plane. The base-band model for the communications
among them is described by the following equation:

Yj(t) =
∑
i�=j

Ge−γdij

dδ
ij

( ∞∑
l=0

Hijl(t) · Xi(t − τij − l)

)
+ Zj(t), t ≥ 1, j ∈ N. (10.2)

We assume that:

(1) δ, γ, G, dij and τij are deterministic real variables known to
all the nodes:

• δ and γ are the path-loss exponent and absorption
constant of the attenuation, respectively. Throughout
this section we assume that γ > 0 or (γ = 0, δ > 3).
G > 0 is just a constant gain.
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• dij is the distance between node i and j, with dij ≥
dmin > 0.

• τij := �dij

r0
� is the propagation delay for signals from

i to j, where r0 is the distance that a signal travels in
one time slot. (Later on we will see that the results
do not really depend on the precise value of τij .)

(2) {Hijl(t)}, {Zj(t)}, {Yj(t)} and {Xi(t)} are complex variables.

• {Hijl(t) : t ≥ 1, i, j ∈ N} is the random fading process.

• {Zj(t) : j ∈ N, t ≥ 1} are i.i.d. complex circular Gaus-
sian1 noises with variance E|Zj(t)|2 = σ2 > 0, inde-
pendent of the fading process {Hijl(t)}, and are not
observable to the users.

• {Xi(t)} is the complex base-band signal sequence
node i transmits, and {Yj(t)} is the complex base-
band signal sequence node j receives.

(3) Each node is subject to an individual power constraint P .
Since the channel has multiple paths with delays, we need
to model what may have been transmitted before time 0,
the time when the useful transmissions begin. We simply
suppose that the signals prior to t = 0 are independent of all
else, unknown to the nodes, and satisfy

|Xi(t)|2 ≤ P̄ < ∞, ∀t ≤ 0, i ∈ N. (10.3)

With the same set of assumptions, one can specialize the model to
the case when L is finite.

C. Network Model under Fading (L < ∞)

When there are no more than L paths for every channel, the base-
band model for the communications in the network is described by the

1 A complex random variable Z is circular Gaussian if it can be represented as Z = Z1 + νZ2
where Z1 and Z2 are two i.i.d. (real) Gaussian random variables, and ν is the square root
of −1.
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following equation:

Yj(t) =
∑
i�=j

Ge−γdij

dδ
ij

(
L−1∑
l=0

Hijl(t) · Xi(t − τij − l)

)
+ Zj(t), t ≥ 1, j ∈ N. (10.4)

Remark 10.1. We have presented the basic models and assump-
tions above. Yet more assumptions for the fading process {Hijl(t)} are
needed. For example, one needs to specify whether a sender/receiver
node knows {Hijl(t)} before transmission, and how fast it changes with
time, etc. These further assumptions will be explicitly made clear for
each result we will present below.

Remark 10.2. Clearly the models for L = ∞ and L < ∞ include all
four fading patterns discussed at the beginning of this subsection.

Remark 10.3. The definition of transport capacity is the same as in
Section 8.

10.2 Main results

We determine both an upper bound and a lower bound for the transport
capacity of networks in high attenuation regime for the case δ > 3. Such
results also apply if γ > 0, irrespective of δ ≥ 0. It can be shown that,
under certain general assumptions on the power of fading, even if every
node knows the fading process non-causally before transmission, the
transport capacity is upper bounded by c1n for a constant c1 < ∞. On
the other hand, Theorem 10.9 shows that even when fading is indepen-
dent from time to time and “power” bounded, c2n bit-meters/second
is achievable for a large class of networks, for some c2 > 0.

It will be clear that, if L < ∞ and {Hijl(t)} is a set of independent
random variables with variances less than a constant σ2

H > 0, and their
distribution functions are continuous, then both requirements on fading
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are satisfied. That is, for such a class of independent fading networks,
the transport capacity is indeed of order Θ(n).

A. Upper bound when L = ∞.

We establish an upper bound on the transport capacity under the fol-
lowing assumption on the fading process, for the case L = ∞.

Definition 10.4. A fading process is called power limited if there
exist positive constants ν ∈ (0,1) and H̄ > 0, such that for any i, j ∈ N,
the fading process satisfies

limsup
T

1
T

T∑
t=1

∞∑
l=0

ν−l|Hijl(t)|2 ≤ H̄,a.s. (10.5)

Theorem 10.5. Suppose the fading process is power limited, then
even if the channel state information (CSI) {Hijl(t)} is known non-
causally to all transmitters and receivers, the transport capacity is
bounded as

CT (n) ≤ c1 · n, for all n,

where

c1 :=



8G
√

PH̄ loge

σ
√

1−ν(dmin/
√

2)δ−1

(
2(δ−2)

δ−3 + δ−1
δ−2

)
,

if γ = 0, δ > 3;
48G

√
PH̄ loge·d1−δ

min

σ
√

1−ν
e−(

√
2/2)γdmin(

1−e−(
√

2/4)γdmin

)4 ,

if γ > 0, δ ≥ 0.

B. Lower Bound when L = ∞.

We need to establish a feasible lower bound on the transport capac-
ity under the following assumptions on the fading process and node
distributions, for the case L = ∞.

Definition 10.6. A fading process will be called independent if the
following is true.
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• {Hj(t), t ≥ 1} is a sequence of independent random vectors,
where Hj(t) := (Hijl(t), i ∈ N, l ≥ 0) for all j ∈ N . That is,
the fading parameters are independent from time to time.

• There exist a > 0 and p∗ > 1/2 such that, for all i, j ∈ N,
t ≥ 1, Pr(|Hij0(t)| ≥ a) ≥ p∗.

• There exist ν ∈ (0,1) and H̃ > 0 such that, for all i, j ∈ N,
∞∑
l=0

ν−lE|Hijl(t)|2 ≤ H̃. (10.6)

Remark 10.7. The following are two special cases of independent
fading processes: i) {Hijl(t)} is a set of constants with |Hijl(t)| ≥ ε > 0,
∀i, j, l, t; ii) {Hijl(t)} is a set of non-zero iid random variables with
continuous distribution and E|Hijl(t)|2 < ∞.

Definition 10.8. A network is called nearly regular if there exists
ζ ≥ 1 such that for every node j there exists another node ĵ with dj,ĵ ≤
ζdmin, i.e., every node can find a nearby neighbor; see Figure 10.1.

Now we have the following result.

Theorem 10.9. Suppose the fading process is independent and the
network is nearly regular. Then, even if the CSI is unknown to transmit-
ters and receivers, for any p̄ ∈ (1/2,p∗) there exists a constant c2 > 0,
such that for any network,

CT (n) ≥ c2 · n, for all n,

Fig. 10.1 A nearly regular network.
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where

c2 :=



min

1
2 ,

PG2(ζdmin)−2δa2 · (p∗ − p̄)
16H̃PG2d−2δ

min
1−ν (1 + 22+δ(2δ−1

δ−1 + 2δ
2δ−1)) + 4δ2


·(1 − H(p̄)) · dmin, if δ > 3,γ = 0;

min

1
2 ,

PG2(ζdmin)−2δe−2γζdmina2 · (p∗ − p̄)
16H̃PG2d−2δ

min
1−ν

(
e−2γdmin + 12e−

√
2γdmin

(1−e−
√

2γdmin )2

)
+ 4δ2


·(1 − H(p̄)) · dmin, if δ ≥ 0,γ > 0,

with H(p̄) := −p̄ log(p̄) − (1 − p̄) log(1 − p̄).

C. Results when L < ∞
The model in (10.4) is common in the literature. It is a special case
of the model for L = ∞. Since there are only a finite number of paths
for each channel, the requirements on fading for similar results as in
Theorems 10.5 and 10.9 can be simplified. The following results are
immediate.

Theorem 10.10. If limsupT
1
T

∑T
t=1 |Hijl(t)|2 ≤ H̄0 < ∞,a.s., ∀i, j, l,

then there exists a positive constant c1 such that CT (n) ≤ c1 · n, for all
n, even if the channel state information {Hijl(t)} is known non-causally
to all transmitters and receivers.

Theorem 10.11. If {Hijl(t)} are independent continuous random
variables with E|Hijl(t)|2 ≤ H̃0 < ∞, and Pr(|Hijl(t)| ≥ a) ≥ p∗ for
some a > 0, p∗ > 1

2 , ∀i, j, l, t, then there exists a positive constant c2

such that CT (n) ≥ c2 · n, for all nearly regular networks of n nodes,
even if the channel state information {Hijl(t)} is unknown to any trans-
mitters and receivers.

10.3 Upper bound

This subsection presents the proof for the upper bound (Theorem 10.5).
A max-flow-min-cut lemma connecting rate to power for general net-
works will be presented first, which is similar to the one in Section 8.3.
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The lemma will then be adapted to the networks satisfying the model
presented earlier. Finally, in Section 10.3.3, the upper bound will be
proved by a random cut-set technique.

10.3.1 Max-flow min-cut revisited

As in Section 8.3 for networks without fading, we have the following
lemma.

Lemma 10.12. (Max-flow min-cut bound) Suppose receptions in
a wireless communication network are modeled as

Yj(t) =
∑
i�=j

∞∑
l=0

Aijl(t)Xi(t − τij − l) + Zj(t), j ∈ N,

where: (i) The τij ’s are deterministic non-negative integers.
(ii) {Aijl(t)} is a sequence of known deterministic complex numbers.
(iii) {Zj(t)} is the i.i.d. circular Gaussian noise process independent of
the signal process {Xi(t)}, and E|Zj(t)|2 = σ2.

Then for any subset S of N , any feasible rate vector {Rij , i, j ∈ N}
satisfies

RSD ≤ 1
T

+ RSDP (T )
e +

1
T

T∑
t=1

∑
j∈N\S

log
(

1 +
E|
∑

i∈S

∑∞
l=0 Aijl(t)Xi(t − τij − l)|2

σ2

)
,

where N\S denotes those nodes in N but not in S, RSD :=∑
i∈S,j∈N\S Rij , and P

(T )
e is the probability of the decoding error.

Note here that a time-varying fading process is allowed. The proof
is similar to that of Lemma 8.9; see [28].

Applying Lemma 10.12 to the wireless networks under consideration
(10.2), one can get the following corollary.

Corollary 10.13. If the fading process in a wireless network modeled
in (10.2) is power limited (Definition 10.4), and the realization of the
fading process is known beforehand to all nodes, then for any subset
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S of N, and feasible rate vector {Rij , i, j ∈ N}, RSD :=
∑

i∈S,j∈N\S Rij

satisfies

RSD ≤ loge · 2β
√

PH̄

σ
√

1 − ν
·

∑
i∈S,j∈N\S

d−δ
ij e−γdij . (10.7)

Proof. We show the proof for the case when there are only a finite
number of paths, i.e., Hijl(t) = 0, for all l ≥ L. The proof for the general
case can be found in [28].

We denote αij := d−δ
ij e−γdij . Let D = N\S. Since the rate vector is

feasible, we know P
(T )
e → 0 as T → ∞. So by Lemma 10.12, we have

RSD ≤ 1
T

T∑
t=1

∑
j∈D

log

1 +
G2

σ2 E

∣∣∣∣∣∑
i∈S

L−1∑
l=0

α−δ
ij Hijl(t)Xi,T (t − τij − l)

∣∣∣∣∣
2


+ o(1).

Furthermore,

G2

σ2 E

∣∣∣∣∣∑
i∈S

L−1∑
l=0

α−δ
ij Hijl(t)Xi,T (t − τij − l)

∣∣∣∣∣
2

=
G2

σ2 E

∣∣∣∣∣∑
i∈S

L−1∑
l=0

(
α

−δ/2
ij Hijl(t)ν−l/2

)
·
(
α

−δ/2
ij Xi,T (t − τij − l)νl/2

)∣∣∣∣∣
2

≤ G2

σ2 E

(∑
i∈S

L−1∑
l=0

∣∣∣α−δ/2
ij Hijl(t)ν−l/2

∣∣∣2)

×
(∑

i∈S

L−1∑
l=0

∣∣∣α−δ/2
ij Xi,T (t − τij − l)νl/2

∣∣∣2)

=
G2

σ2

(∑
i∈S

L−1∑
l=0

α−δ
ij · |Hijl(t)|2 · ν−lµ

)

×
(∑

i∈S

L−1∑
l=0

α−δ
ij · E |Xi,T (t − τij − l)|2 · νlµ−1

)
,
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where the inequality comes from the Cauchy-Schwarz inequality, and
the last equality follows from the fact that we know Hijl(t) beforehand,
with µ a constant to be determined later.

It is easy to verify that for any non-negative x and y, log(1 + xy) ≤
(x + y) loge. Hence

RSD − o(1)

≤ 1
T

T∑
t=1

∑
j∈D

log

(
1 +

(∑
i∈S

L−1∑
l=0

α−δ
ij Gµ

σ
|Hijl(t)|2ν−l

)

×
(∑

i∈S

L−1∑
l=0

α−δ
ij Gµ−1

σ
E|Xi,T (t − τij − l)|2νl

))

≤ loge · 1
T

T∑
t=1

∑
j∈D

∑
i∈S

L−1∑
l=0

(
α−δ

ij Gµ

σ
|Hijl(t)|2ν−l

+
α−δ

ij Gµ−1

σ
E|Xi,T (t − τij − l)|2νl

)

= loge
∑

i∈S,j∈D

α−δ
ij G

σ

(
µ · 1

T

T∑
t=1

L−1∑
l=0

|Hijl(t)|2ν−l

+µ−1 · 1
T

T∑
t=1

L−1∑
l=0

E|Xi,T (t − τij − l)|2νl

)
. (10.8)

Because of the power-boundedness of the fading (10.5), (10.3), and the
individual power constraint P on the signals, we have

R.H.S. of (10.8)

≤ loge
∑

i∈S,j∈D

α−δ
ij G

σ

(
µH̄ + o(1) + µ−1

×
L−1∑
l=0

E

(
1
T

T∑
t=1

|Xi,T (t − τij − l)|2
)

νl

)

≤ loge
∑

i∈S,j∈D

α−δ
ij G

σ

(
µH̄ + o(1) + µ−1
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×
L−1∑
l=0

(
P +

τij + l

T
P̄

)
νl

)

= loge
∑

i∈S,j∈D

α−δ
ij G

σ

(
µH̄ + o(1) + µ−1 P

1 − ν

+µ−1 τij

T

P̄

1 − ν
+ µ−1 P̄

T

L−1∑
l=0

lνl

)

= loge
∑

i∈S,j∈D

α−δ
ij G

σ

(
µH̄ + o(1) + µ−1 P

1 − ν

+
µ−1

T

(
τijP̄

1 − ν
+ P̄

ν

(1 − ν)2

))
.

Now, letting T → ∞, we get

RSD ≤ loge
∑

i∈S,j∈D

α−δ
ij G

σ

(
µH̄ + µ−1 P

1 − ν

)
.

The result then follows by setting µ =
√

P
H̄(1−ν) .

10.3.2 Connecting rate vector to distance using
random cut-sets

We now exhibit a natural relationship between cut-sets and the
distance-rate product. It allows one to easily convert results for rate
vectors across cut-sets, a staple feature in network information theory,
to results on the transport capacity.

Lemma 10.14. If for a set of numbers {aij , i, j ∈ N},∑
i,j aijI[i∈S,j∈N\S] ≥ 0 holds for every subset S of N , then∑
i,j aijdij ≥ 0.

Proof. By the symmetry of the condition, for any subset S of N ,
n∑

i=1

∑
j �=i

aij(I[i∈S,j /∈S] + I[i/∈S,j∈S]) ≥ 0. (10.9)
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Now we will construct a random event to select a subset S of N,
such that that probability that node i will be separated from node j is
proportional to dij .

Cover the n-node network with a big disk C. First pick a diameter
uniformly, then pick a point on that diameter uniformly. Then pick a
straight line to cut C, passing through the point and being perpendic-
ular to the diameter. Now we pick equally likely one of the two sets of
nodes separated by the line as S.

It is easy to show that

Prob{ Line F separates points i and j} =
dij

πr
,

where r is the radius of the disk.
Taking the expectation on both sides of (10.9), we get the result.

10.3.3 Proof of upper bound

We only show the proof of Theorem 10.5 for the case when γ = 0, δ > 3.
The general case can be shown similarly.

The following lemma is needed to bound
∑

j �=i d
−δ′
i,j for δ′ > 2.

Lemma 10.15. For any i0 ∈ N and δ′ > 2,∑
j �=i0

d−δ′
i0,j ≤ 4

(dmin/
√

2)δ′

(
2(δ′ − 1)
δ′ − 2

+
δ′

δ′ − 1

)
.

Proof. The reason that the sum is finite is because there is a mini-
mum separation between any pair of nodes. This means the maximum
number of nodes that can be packed within a disk centered at i0 is pro-
portional to its area. Since d−δ′

decreases rapidly enough with distance,
the sum is upper bounded by a finite number. The complete proof can
be found in [28].

Now we prove Theorem 10.5.
Proof of Theorem 10.5: for the case γ = 0, δ > 3: By Corol-

lary 10.13, we know that for any subset S of N,
∑

i,j RijI[i∈S,j∈N\S] ≤
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loge · 2β
√

PH̄
σ
√

1−α
·
∑

i,j d−δ
ij I[i∈S,j∈N\S]. Hence by Lemma 10.14,

∑
ij

Rijdij ≤ loge · 2β
√

PH̄

σ
√

1 − ν
·
∑
ij

d1−δ
ij .

Applying Lemma 10.15 we get the desired result. �

10.4 Achieving linear growth

In this subsection we cover the main ideas behind the proof of linear
growth of transport capacity for nearly regular planar networks (Fig-
ure 10.1) under independent fading.

For a given nearly regular network, we will let each node j ∈ N only
transmit to its nearest neighbor ĵ, which is no more than ζdmin away.

The whole idea of the construction is to focus on the channel
between each individual transmitter-receiver pair. The channel will be
translated into a binary symmetric channel (BSC) with a crossover
probability strictly less than half, in every slot that the source node is
transmitting. Building on top of this BSC one can certainly achieve a
strictly positive rate. Thus Theorem 10.9 is proven since the informa-
tion travels at least a distance dmin for each pair.

Suppose node 2 is node 1’s chosen destination. Let us focus on pair
(1,2). We want to “build” a BSC between them whenever node 1 is
transmitting. Three facts can cause channel degradation in addition
to the additive circular Gaussian noise: (i) Channel variation: This is
a random variable that could be very large or very small; (ii) Inter-
channel interference: The simultaneous transmissions can cause inter-
ference; and (iii) Inter-symbol interference, since the fading is frequency
selective.

Since the CSI is not known, to combat these one needs to exploit
the statistical properties of the independent fading process (Defini-
tion 10.6). From that definition we notice the following facts:

• With probability p1 > 1/2, the amplitude of the first tap
gain, |H120(t)|, will be larger than a positive constant a. On
the other hand, it will be smaller than a positive constant
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M with probability larger than p2 > 1/2, since its variance
is bounded above;

• The signal attenuates significantly with distance according
to r−δe−γr. This will help to eliminate interference caused
by other transmissions;

• Tap gains |H12l(t)| decrease significantly as l gets large. This
will help to eliminate inter-symbol interference.

Taking into account the above considerations, the transmissions are
constructed as follows.

(1) On-off coding: Every sender node generates a random binary
(0 or 1) codebook sequence. The codebooks are independent
of each other.

(2) Random time-sharing before transmission: Each sender only
selects a small portion of the communication horizon to be
its duty slots for transmission. By doing so it can save power,
avoid inter-symbol interference, and decrease the interference
to others at the same time. A node’s duty slots are deter-
mined before transmission by a random time-sharing mech-
anism that is known to all nodes.

(3) Peaky signaling and randomizing phase: During a node’s duty
slots, a code symbol will be sent out after first multiplying by
a high gain and a random phase. The purpose of the random
phase is to make interference look like random noise.

(4) Threshold decoding: At the receiver side, it will set a thresh-
old M > 0 and compare the received signal strength with it.
It declares a “1” if the threshold is exceeded; otherwise it
declares a “0”. Thus the channel is turned into a binary-
input-binary-output channel.

Now we present the above steps in more detail.
We begin by fixing a number p̄ ∈ (1/2,p∗). For ε > 0 sufficiently small,
we introduce the following quantities for brevity:

Pε := P − ε,
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λ :=


4

(dmin/
√

2)2δ

(
2δ−1
δ−1 + 2δ

2δ−1

)
, if δ > 3,γ = 0;

12d−2δ
mine−

√
2γdmin

(1−e−
√

2γdmin )2
, if δ ≥ 0,γ > 0,

(10.10)

θ := min

{
1/2, (10.11)

(P − ε)β2(ζdmin)−2δe−2γζdmina2 · (p∗ − p̄)
16H̃(P−ε)β2

1−α

(
d−2δ

mine−2γdmin + λ
)

+ 4δ2

}
,

θε := θ − ε.

For any ε > 0 making the above quantities positive, and ε1 ∈ (0, p̄ −
1/2), we will show that the information rate θε(1 − H(p̄ − ε1) − ε1) is
achievable for every node pair j and ĵ, simultaneously.

From now on, p̄, ε and ε1 are all fixed.

10.4.1 Random coding

Each node is given θεT slots to transmit during a communication hori-
zon T .

For a given rate R = 1 − H(p̄ − ε1) − ε1, the n nodes generate their
codebooks individually, independently of each other. Node j gener-
ates a 2θεTR × θεT random matrix with entries being i.i.d. binary
valued r.v.’s with distribution p(x) such that Pr(X = 0) = 1/2, and
Pr(X = 1) = 1/2. The wth codeword is the wth row of this matrix. The
codebook of node j is denoted as Cj := {Xj

w = (Xj
w,1,X

j
w,2, . . . ,X

j
w,θεT

) :
w = 1,2, . . . ,2θεTR}, and it is revealed to the intended receiver node ĵ.

10.4.2 Time scheduling of transmissions

If all the nodes transmit in the same time slots, then each receiver will
face strong interference from nearby nodes. So we make nodes transmit
in a timeshared fashion. Specifically, for any given large T > 0, each
node j ∈ N only transmits at a set of pre-selected increasing time-slots
tjk, k = 1,2, . . . ,θεT . This set is called the set of duty slots of node j.
The corresponding (intended) receiver ĵ will decode based only on the
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signals it receives at time slots tjk, k = 1, . . . ,θεT . (Note that, without
loss of generality, we assume here that τjĵ = 0 for all j ∈ N).

Now nodes “bid” for their duty slots in the following way, before
transmission.

Every node j ∈ N independently generates a sequence of
i.i.d. Bernoulli r.v.’s Bj(t), t ≥ 1, with Pr {Bj(t) = 0} = 1 − 2θ, and
Pr{Bj(t) = 1} = 2θ. Define Bj(t) := 0 for t ≤ 0. Let t̂j(k) be the time
slot in which node j gets the kth 1 in its sequence.

According to the transmission scheme we will present later, a code-
word will be multiplied by a gain

√
Pε/θ and a random phase before

being sent out. Based on this, and by a careful analysis [28], one can
show that, on average, if node j takes {t̂j(k)} as its duty slots, the
interference caused by simultaneous transmissions from other nodes is
upper bounded by 2Pεβ2

1−α (d−2δ
mine−2γdmin + λ),∀j ∈ N,k = 1, . . . ,θεT .

Based on this observation, one can prove the following lemma on
the existence of a low interference schedule.

Lemma 10.16. (Bounded interference) Let the indicator function
bi(t), i ∈ N, be defined as follows:

bi(t) =
{

1, if slot t is in node i’s duty slot;
0, if otherwise.

(10.12)

Then for all T sufficiently large, there exists a set of natural numbers
{tjk,k = 1, . . . , θεT ;j ∈ N} such that if we let node j’s duty slots be this
set, then

d−2δ
mine−2γdminβ2

∞∑
l=1

αl Pε

θ
bj(t

j
k − l)

+
∑
i�=j,ĵ

d−2δ
iĵ

e−2γriĵβ2
∞∑
l=0

αl Pε

θ
bi(t

j
k − τiĵ − l)

≤ 4Pεβ
2

1 − α
(d−2δ

mine−2γdmin + λ), ∀j ∈ N,k = 1, . . . ,θεT,

where λ is defined in (10.10).
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10.4.3 The transmission schedule and random phases

Each node j ∈ N chooses a message Wj uniformly from {1,2, . . . ,2θεTR}.
During j’s duty slot tjk (k = 1,2, . . . ,θεT ), it first generates a ran-
dom phase, exp(ϑφj(t

j
k)), where ϑ is the square root of −1, and

φj(t
j
k) ∼ U [0,2π). Then it transmits Xj

wj ,k · exp(ϑφj(t
j
k)). The random

phases exp(ϑφj(t))’s are introduced just to help the decoding by elim-
inating the possible correlations among signals and fading processes.
The receivers need not know their exact values.

10.4.4 Decoding by thresholding

Upon receiving the complex baseband signal sequence {Yĵ(t
j
k),1 ≤ k ≤

θεT}, node ĵ first passes the sequence through a simple thresholding
filter, as follows:

Y ĵ
k =

{
1, if

∣∣∣Yĵ(t
j
k)
∣∣∣2 ≥ M ;

0, otherwise,
k = 1,2, . . . ,θεT,

where

M :=

(
4H̃Pεβ

2

1 − α
(d−2δ

mine−2γdmin + λ) + σ2

)/
(p∗ − p̄). (10.13)

This is shown in Figure 10.2.
Then, node ĵ declares that the index Ŵj was sent if

1
θεT

θεT∑
k=1

I
[Xj

Ŵj ,k
/
√

Pε/θ=Y ĵ
k ]

≥ p̄ − ε1, (10.14)

and there is no other codeword Xj
w that satisfies this same condition.

Fig. 10.2 The communication system.
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If no such Ŵj exists, or if there is more than one such, then an error
is declared.

The analysis of the probability of decoding error can be found in
[28].

10.5 Notes

The section is based on [28].



11
MIMO Techniques for Wireless Networks

In Sections 8–10 we characterized the fundamental scaling behavior of
the performance of wireless ad hoc networks, from an information the-
oretic point of view. In this chapter, still addressing similar questions,
we show how multi-input multi-output (MIMO) techniques and analy-
sis of random matrices, can be used to derive bounds on performance
of wireless networks.

Using MIMO techniques, we first present an upper bound, in terms
of individual powers and distances between nodes, on the transport
capacity.

As an example of its usage, in Section 11.2, we address the informa-
tion flow in a special class of random wireless networks, where n nodes
in the left half of the domain want to transmit information to n other
nodes in the right half. An upper bound is derived using MIMO tech-
niques, showing that the sum rate cannot grow faster than a sub-linear
function in n.

11.1 An upper bound on transport capacity using
MIMO techniques

We begin with a short discussion on MIMO systems, and then apply
the techniques to derive an upper bound on the transport capacity.
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ReceiverTransmitter

Fig. 11.1 An nt × nr MIMO system with nt transmit antennas and nr receive antennas.

A. MIMO systems

Recently as a result of developments in antenna and digital signal pro-
cessing technology, multiple antennas on wireless devices have become
feasible. Compared to the one antenna case, MIMO systems enjoy more
reliable communications (called diversity gain) and sometimes much
higher data rate (called multiplexing gain). This is due to the fact that
signals can be collected through different paths with different path
gains; see [23, 24]. The study of MIMO systems has been for some time
now, e.g. [23, 24] and the references therein.

A typical setup for a MIMO system with nt transmit antennas and
nr receive antennas is shown in Figure 11.1. If one denotes by hij the
channel gain from the i-th transmit antenna, 1 ≤ i ≤ nt, to the j-th
receive antenna, 1 ≤ j ≤ nr, then assuming additive Gaussian noise the
system can be described by the following equation.

Y = Hnr×ntX + Z,

where Hnr×nt is a nr × nt matrix with entries {hij}, Z is Gaussian noise
with power σ2, and X and Y are two vectors denoting the transmitted
signal and received signal, respectively. In addition, the signal vector
X is subject to a power constraint: E||Xi||2 ≤ Pi, for 1 ≤ i ≤ nt.1

It can be shown that the maximum information rate is achieved by
using Gaussian random code books, i.e., with X is a vector of Gaussian

1 Sometimes the signal power constraint is on the total power consumption: E||X||2 ≤ P .
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random variables; see e.g., [23, 24]. Let us denote the covariance matrix
of X by Kx. If H is only known to the receiver, then the maximum
rate achievable is

max
Kx�0,(Kx)ii≤Pi

E[logdet(I +
1
σ2 HKxH†)],

where Kx � 0 denotes that Kx is non-negative definite. However if H is
known to both the transmitter and the receiver, the maximum rate is

E

[
max

Kx�0,(Kx)ii≤Pi

logdet(I +
1
σ2 HKxH†)

]
.

Note that now Kx is a function of H.

B. Upper-bounding the transport capacity

Consider an n-node network, N := {X1,X2, · · · ,Xn}, on the plane. The
(discrete time) communications are in an iid flat fading environment.
Specifically, the received signal at node j at time t is

Yj(t) =
∑
i�=j

Hij(t)
dδ

ij

Xi(t) + Zj(t), (11.1)

where Xi(t) is the signal transmitted by node Xi at time t, dij is the
distance between nodes Xi and Xj , and {Zj(t), ∀j, t} is iid circular
Gaussian noise with variance σ2. {Hij(t), t ≥ 0} is a stationary and
ergodic stochastic process, with the marginal probability distribution
symmetric with respect to the origin, and independent for each pair
of nodes (Xi,Xj). For simplicity we assume that E|Hij(t)|2 = 1 for
all i, j, t. Furthermore, we suppose that each node Xi is subject to an
individual power constraint Pi.

The following is an upper bound on the transport capacity.

Theorem 11.1. If the channel state information (CSI)
{Hij(t),∀i, j, t} is known, then the transport capacity is upper
bounded by

1
σ2

n∑
i,k,j=1

√
PiPk min(dij ,dkj)

dδ
ijd

δ
kj

. (11.2)
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If instead the CSI is unknown, then the transport capacity is upper
bounded by

1
σ2

n∑
i,j=1

Pidij

d2δ
ij

. (11.3)

Proof. We begin with the case where no CSI is available. Consider
a subset of nodes S ∈ N, and define D := N\S. We now bound the
information flow from S to D by MIMO techniques.

Assume that nodes in S can collaborate as a super-node with |S|
transmitting antennas, as do the nodes in D with |D| receiving anten-
nas. Assume further that there is a genie that provides all CSI to only
the nodes in D. These assumptions can only result in larger rates.
Now the system is equivalent to a MIMO communication system with
receiver-only CSI, with |S| transmitting antennas and |D| receiving
antennas. Therefore, the information rate from S to D is upper bounded
by the capacity of such a MIMO channel as follows:∑

i∈S,j∈D

Rij ≤ max
Kx�0,(Kx)ii≤Pi

E[logdet(I +
1
σ2 HKxH†)] (11.4)

:= max
Kx�0,(Kx)ii≤Pi

R(Kx), (11.5)

where Kx is a |S| × |S| covariance matrix, Kx � 0 denotes that Kx

is non-negative definite, and H is a matrix with entries of the form
Hij(t)/dδ

ij . By the assumption on the fading process {Hij(t)}, one can
show that the optimal covariance matrix Kx, in order to maximize the
right hand side of (11.4), is diagonal (see [14] for details). Using the
fact that the determinant of a Hermitian matrix is at most as large
as the product of its diagonal entries (the Hadamard inequality), the
right hand side of (11.4) is upper bounded by:

max
Kx�0,(Kx)ii≤Pi

R(Kx) ≤ E

∑
j∈D

log

(
1 +

1
σ2

∑
i∈S

Pi|Hij |2d−2δ
ij

)
≤
∑
j∈D

log

(
1 +

1
σ2

∑
i∈S

Pi/d2δ
ij

)
(11.6)
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≤ 1
σ2

∑
j∈D

∑
i∈S

Pi

d2δ
ij

, (11.7)

where (11.6) follows from Jensen’s inequality, and (11.7) because
log(1 + x) ≤ x.

Combining (11.4) and (11.7), we get∑
i∈S,j∈D

Rij ≤ 1
σ2

∑
j∈D

∑
i∈S

Pi

d2δ
ij

.

Applying Lemma 10.14 of Section 10.3.2 we thus get∑
ij

Rijdij ≤ 1
σ2

n∑
i,j=1

Pidij

d2δ
ij

.

This shows (11.3). The bound in (11.2) can be shown similarly;
see [14].

Remark 11.2. Theorem 11.1 together with further arguments can
be used to show that the transport capacity of wireless networks under
flat fast fading, and with dij ≥ dmin > 0, is upper bounded by a linear
function in n.

11.2 The sum rate across a cut-set for a class of random
wireless networks

In this subsection, we consider the scaling behavior of the sum of the
rates from one side of a wireless network to the other side.
Random Network: We consider the following random network consist-
ing of n nodes, {(X−

i ,X+
i ), i = 1, · · · ,n}, distributed in the domain

Ωn := [−
√

n,
√

n] × [0,
√

n]. Node X−
i wishes to send information to

node X+
i , for all i; see Figure 11.2. The location of X−

i is selected uni-
formly from domain Ω−

n := [−
√

n,0] × [0,
√

n], while X+
i is uniformly

selected from Ω+
n := [0,

√
n] × [0,

√
n], independently. All the pairs are

independent from each other.
As in Sections 8–10, we assume that a signal attenuates with dis-

tance d according to the function

g(d) =
e−γd

dδ
,
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Fig. 11.2 A random network with 3 sender nodes and 3 receiver nodes.

where δ is the path-loss exponent,and γ is the absorption constant.
We assume that there is no fading, and that each node is subject to
an individual power constraint P . Furthermore, the received signal at
each node is corrupted by an additive iid zero mean Gaussian noise
with variance σ2.

We are interested in the sum rate of the n pairs.

Theorem 11.3. If γ > 0, then the sum rate is upper bounded by
K1

√
n(logn)2, almost surely as n → ∞, where K1 is a positive constant.

Theorem 11.4. If α > 1 and γ = 0, then the sum rate is upper
bounded by K2n

(
logn

n
1
2 − 1

α
+ 1√

n

)
, almost surely as n → ∞, where K2

is a positive constant.

We only present the key steps in proving Theorem 11.3; see [17] for
details.

Proof of Theorem 11.3: Similar to Section 11.1, we assume that the
nodes in Ω− can collaborate as one super-node with n transmitting
antennas, while nodes in Ω+ can collaborate as one super-node with n

receiving antennas. Furthermore, we allow the transmitting antennas to
optimally re-allocate their powers while preserving the sum constraint
at each super-node. That is, instead of individual power constraints,
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we impose the following cumulative constraint:
n∑

i=1

E|X−
i |2 ≤ nP.

Now the communication has been transformed into a MIMO channel
with Gaussian noise. If we assume the received signal at node X+

i is
Y +

i , for all i, then the MIMO channel can be expressed as

Y +
j =

n∑
i=1

HijX
−
i + Zj , ∀j,

where {Zj} is iid zero mean Gaussian noise with variance σ2, and
Hij = e−γdijd−δ

ij , with dij = |X−
i − X+

j |. The sum rate Rsum is now
upper bounded by the channel capacity. Using the information theo-
retic result for MIMO channels [23], the channel capacity is achieved
when (X−

1 , · · · ,X−
n ) is a jointly Gaussian vector with some covariance

matrix Q. So we have

Rsum ≤ max
pX :

∑
i E|X−

i |2≤nP
I(X−

1 , · · · ,X−
n ;Y +

1 , · · · ,Y +
n )

≤ max
Q�0:Tr(Q)≤nP

logdet(I + HQH†).

By a unitary transformation of the matrix H (see [23]), one obtains
that

Rsum ≤ max
pi≥0:

∑n
i=1 pi≤nP

n∑
i=1

log(1 + piλ
2
i ) ≤

n∑
i=1

log(1 + nPλ2
i ) =: Bn,

where {λi} are the singular values of the matrix H, in decreasing order.
Noting that {λ2

i } are the eigenvalues of matrix HH†, we can bound
Bn by the following majorization argument (see [18], pp.218, Theo-
rem 9.B.1). We know that the eigenvalues {λ2

i } majorize the diagonal
elements of HH†, i.e.,

l∑
i=1

λ2
i ≥

l∑
i=1

(HH†)ii, ∀1 ≤ l ≤ n − 1, and

n∑
i=1

λ2
i =

n∑
i=1

(HH†)ii.
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On the other hand, by Proposition 3.C.1 of [18], pp. 54, we
know that the function (x1,x2, · · · ,xn) �→

∑n
i=1 log(1 + nPxi) is Schur-

concave. That is, it is a function f : R �→ R such that f(x1, · · · ,xn) ≤
f(y1, · · · ,yn) whenever (x1, · · · ,xn) majorizes (y1, · · · ,yn) in the sense
above ([18], Definition 3.A.1, pp. 54). We therefore have

Bn ≤
n∑

i=1

log(1 + nP (HH†)ii).

Moreover, since e−γdd−δ is decreasing in d, we have

(HH†)ii =
n∑

l=1

|Hil|2 =
n∑

l=1

(g(|X−
i − X+

l |))2 ≤ n(g(|x̃i|))2,

where x̃i is the x-coordinate of node X−
i . So finally we obtain

Rsum ≤
n∑

i=1

log

(
1 + n2P

e−2γ|x̃i|

|x̃i|2δ

)
.

Notice that this is a sum of n iid random variables, with |x̃i| being
uniformly distributed in [−

√
n,0]. Through further analysis based on

this fact (see [17]), this sum can be shown to be upper bounded by
K1

√
n(logn)2, almost surely as n → ∞, where K1 is a positive constant.

�

11.3 Notes

This section is based on [14] and [17].



12
Concluding Remarks

With the advent of wireless networks and sensor networks, there has
naturally been much interest in quantifying what they can provide in
the way of information transfer. Also, there is great interest in deter-
mining what the appropriate architectures are for operating them. This
text presents one theory to address these questions. Starting with mod-
els which are salient to current technology and the current proposals to
operate them in a multi-hop manner, we have shown how one can get
insights by studying their behavior in terms of the number of nodes in
the network. The performance measure of transport capacity measures
the distance hauling capacity of wireless networks. We have provided
sharp order estimates of the transport capacity in the best case. For
random networks, we have studied the common throughput capacity
that can be supported for all the nodes. The constructive procedure
for obtaining the sharp lower bound gives insight into an order optimal
architecture for wireless networks operating under a multi-hop strat-
egy. Such results, it is hoped, can enable one to understand the forest
of wireless networks as well as the role of protocols and trees in it.

However, the models and the mode of operation studied above
beg the question of whether better, perhaps much better, informa-
tion hauling capacity can be achieved by resorting to other more
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powerful techniques that the wireless medium can conceivably support.
To address this, one is forced to turn to the fundamental formulation
proposed by Shannon for the study of communication. However, in the
case of networks, progress in information theory has been stymied for
several decades by the intractability of obtaining exact results even for
apparently simple networks such as the three-node relay channel or the
two-by-two cross interference channel.

One needs to somehow overcome this barrier. For this purpose, we
have introduced an enriched model of wireless networks in which spatial
locations of nodes, distances between nodes, and the attenuation func-
tion for signals as a function of distance is more explicitly accounted
for. What emerges from the resulting study is an interesting connection
between physical properties of the medium such as the attenuation of
signals with distance, and properties in the large such as the network-
wide quantity of transport capacity.

There is an interesting dichotomy between the high attenuation
regime and the low attenuation regime. In the former case, there is
a fundamental energy cost in joules to be expended by the network
in transmission energy for information transfer of one bit-meter. This
leads to a scaling law that is of the same order as is achievable through
multi-hop transport. This shows that the multi-hop mode of informa-
tion transfer is in fact order-optimal in load-balanced scenarios. Such
an architectural result provides some macroscopic strategic insight into
design strategies for wireless networks where attention is often focused
on more tactical considerations involving protocol improvements.

In the low attenuation regime, it is interesting that other strategies
emerge as of interest which could even challenge entrenched notions
such as spatial reuse of spectrum. Currently, these results are for unre-
alistically low attenuations, lower even than the inverse square law case.

An interesting open problem is that of bridging the gap between
these two cases studied. Also of interest is obtaining more explicit topol-
ogy and demand-dependent information on wireless network capacity
than the notions of transport capacity and throughput capacity can
provide. Further, the preconstants in bounds and order results need to
be sharpened.

Clearly, much remains to be done.
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