
The Convergence of Control, Communication,

and Computation?

Scott Graham and P. R. Kumar

Department of Electrical and Computer Engineering, and
Coordinated Science Laboratory

University of Illinois at Urbana-Champaign
1308 West Main Street

Urbana, IL 61801
USA

srgraham@uiuc.edu, prkumar@uiuc.edu

http://black1.csl.uiuc.edu/∼prkumar/

Abstract. The convergence of communication and computation over
the past two decades has given us the Internet. We believe that the next
phase of the information technology revolution will be the convergence
of control, communication, and computation. This will provide the abil-
ity for large numbers of sensors, actuators, and computational units, all
interconnected wirelessly or over wires, to interact with the physical en-
vironment. We argue that in the proliferation of this “convergence,” a
critical role will be played by the architecture. We describe an exper-
imental Convergence Testbed at the University of Illinois, outline the
architectural challenges, and our efforts in this direction.

1 Introduction

Over the past two decades we have seen the convergence of communication
and computation, which has given us the Internet. Worldwide there are over
150 million internet hosts [1], and over 600 million users [2]. Indeed networked
computers nowadays are critical not only for their computation capabilities but
also for their communication capabilities. This phase of the information technol-
ogy revolution has provided us the ability to exchange information in the form
of email or to browse each other’s webpages.

We anticipate that the next phase of the information technology revolution
will provide us the ability to actively interact with the environment and alter it.

? This material is based upon work partially supported by USARO under Contract
Nos. DAAD19-00-1-0466 and DAAD19-01010-465, DARPA under Contract Nos.
N00014-01-1-0576 and F33615-01-C-1905, AFOSR under Contract No. F49620-02-
1-0217, DARPA/AFOSR under Contract No. F49620-02-1-0325, and NSF under
Contract No. NSF ANI 02-21357. Any opinions, findings, and conclusions or rec-
ommendations expressed in this publication are those of the authors and do not
necessarily reflect the views of the above agencies. Captain Graham is studying
under U.S. Air Force sponsorship through the AFIT/CI program.

2 Scott Graham and P. R. Kumar

Such interaction will require sensing the environment and acting on it, and will be
achieved by interconnecting sensors and actuators with computation elements,
and providing all with communication capability.

Two technological trends making this feasible are the growth in embedded
computers and wireless networking. About 98% of all microprocessors sold are
embedded, and their percentage is growing [3]. They are present in cell-phones,
watches, stereos, microwaves, washing machines, wireless thermometers, cordless
phones and answering machines. They exist in pocket video games, VCRs, DVD
players, printers, and components of computer systems. Automobiles typically
have multiple such processors.

Currently these embedded devices function in an isolated way and are not
significantly interconnected. The cost of wires alone is comparable to the cost of
many of these devices, not to mention installation costs. Thus, toasters are not
connected to alarm clocks. However we may be on the cusp of a wireless revolu-
tion. Wi-Fi (IEEE 802.11x) has experienced double-digit growth since 2000 [4],
and is now installed as a default on several makes of computers. Lower cost wire-
less connectivity is possible with Bluetooth available at a $6 per chipset cost to
manufacturers [5]. Extrapolating these trends in wireless communication, we can
envision a time, not far off, in which wireless connectivity is a commodity. With
each embedded device functioning as a sensor or an actuator, and each wire-
lessly connected with others, the future could well see orchestras of sensors and
actuators playing over the ether in vast interconnected control systems. Indeed,
the Berkeley Motes [6] already provide a combination of sensing, wireless com-
munication, and computation, all in a package with a small spatial footprint and
low energy usage.

In short we anticipate the convergence of control with communication and
computation. But how will these systems interoperate? How will they be inter-
connected, physically, in applications, and in theoretical frameworks? These are
the issues addressed in this paper. We argue that the architecture of these sys-
tems will play a critical role in their emergence and proliferation. We describe a
testbed for convergence at the University of Illinois. We elaborate on the issues
that arise, and outline an architectural solution being pursued by us to realize
the twin goals of reliability and minimal design and deployment time.

2 Convergence Towards a More Holistic Theory

The aforementioned technological developments are leading to accompanying
changes in research directions which are aimed at a more integrated view of
systems theory. Though it may not be completely accurate to put too clear a
historical marker, it can be said that the last half of the twentieth century was
the age of developing the individual areas of control, communication, and compu-
tation. von Neumann’s idea of a stored program (1944) and the ENIAC (1946)
are about a half century old, and roughly mark the beginning of the age of
computers. Wiener’s second World War work, embodied in his “Yellow Peril”
book (so known for the color of its cover and its perceived incomprehensibility)

The Convergence of Control, Communication, and Computation 3

dates to 1949. Shannon’s foundational information theory was published in 1948.
Kalman’s work on providing a foundation for state-space control theory dates
to around 1960. In signal processing the seminal work of Cooley and Tukey is
slightly more recent, around 1965.

However, we anticipate that the next few decades will witness the develop-
ment of a more integrated system theory combining all these areas. For exam-
ple, signal/image processing methods with information theoretic performance
assessment and connections are already emerging [7, 8]. Networking is seeing the
confluence of computer science with more traditional communications research
conducted in Electrical Engineering departments.(INFOCOM, for example, is
jointly organized by the IEEE Computer and IEEE Communications Societies).
Communication and control have a long history of involvement, dating back to
the work of Wiener and Nyquist.

In the future, at the theoretical level (but not necessarily at the architectural
level), issues such as addressing messages, and combining sensory inputs, while
computing based on locally available data, will all be seen simply as tradeoffs in
the context of design of a larger system.

As we enter this age of convergence, several challenges arise. In this paper we
highlight one of them; how to design such “systems” (to use the EE term), or the
“application” (to use the CS term), in an environment of constant change where
new features are always being added, and hardware is constantly being changed,
all without necessitating major recoding, and with a view to minimizing the
designer’s time. A closely related issue is what sort of software infrastructure (or
“middleware” to use the CS term) is needed to facilitate the rapid development
and deployment of systems.

Consider the IP stack in networking. It is present in all computers and has
provided essential communication services by making interconnections trans-
parent to the user. But what will the “IP stack” equivalent be for distributed
and interconnected embedded systems? A suitable architectural construct will
need to provide the appropriate services for sensors, actuators, computation, and
communication to work together. Such infrastructure code should self-organize,
taking care of details such as which computation is running on which host, and
relieve the designer from mundane details such as IP addresses and the prob-
lem of start-ups, etc. The software should provide the right abstractions and
interfaces to application programmers, and a rich set at that, so that they can
concentrate on developing applications.

We can today build one-of-a-kind systems to fit just about any single use
case, although such systems could be, and often are, enormously expensive. But
that is not the vision we are projecting. Our vision is broader. The convergence of
communication with computation is today ubiquitous because of several forces.
We contend that similar forces are at play which will lead to the confluence of
control with communication and computation also becoming ubiquitous. More-
over, the resulting systems will need to adapt to changing uses.

Our goal, thus, is to move from an era of carefully hand-crafted systems to
mass production of interconnectable devices, with easy to configure interfaces,

4 Scott Graham and P. R. Kumar

such that systems which feature the convergence of control with communication
and computation are routinely deployed with short design and development time,
while incorporating flexibility to meet changing needs.

3 A Testbed: The IT Convergence Lab

To investigate these issues, we have set up an “IT Convergence Lab” at the
University of Illinois, which features a testbed, as shown in Figure 1.

Fig. 1. Convergence Laboratory Testbed at the University of Illinois

There are several reasons for the use of an experimental testbed. First, it
represents a complete system, as we see below. Thus, while researchers often, and
with good reason, focus in depth on a particular aspect of the overall system
(say, the control law used, or the routing protocol, or the image processing
algorithm), working with the system in its entirety educates us about all aspects
of the system. Thus we are able to identify what is the critical bottleneck in
the system at any given stage in the design. This may vary at different stages
of evolution, as has been witnessed by us, between the search strategy used in
predictive control, to the cycle time of computation in the image processing

The Convergence of Control, Communication, and Computation 5

algorithm which needs to locate cars under non-uniform lighting, etc. Thus we
are able to assess the impact of the choice of a particular strategy for a subsystem
on the overall system’s QoS. Additionally, the holistic aspect of the system serves
a pedagogical role both for students and researchers. Instead of working in an
abstract setting, the testbed forces us to be pragmatic in the context of a real
system.

The particular choice of the testbed described below is useful in that it is a
malleable system, which is at the same time simple. It allows us to investigate
substantial aspects of middleware development as well as application develop-
ment. Our goal is to develop and explore the principles important to the pro-
liferation of control, communication, and computation, and to provide at least
one concrete application and working implementation which incorporates these
principles.

Our testbed consists of a fleet of fifteen cars. The cars are radio controlled
(RC), which allows us to avoid mounting laptops on them, thus allowing us to
keep the cars small in size, which in turn allows us to operate a number of them
on a small indoor track, 12 feet wide by 16 feet long. The cars are controlled
by off-board laptops, with each car having its own dedicated laptop. The serial
port of each laptop is connected to a microcontroller, which in turn is connected
to a transmitter which drives the particular RC car. The radio transmitters
for the cars use separate non-interfering frequencies, and should essentially be
regarded as dedicated “wires,” emulating a scenario where the laptops are indeed
mounted on the cars and connected to them by wires. The entire set of a car,
its transceiver, its microcontroller, and its laptop, could just be considered as a
single “car unit”.

For communication between computers, the lab uses an ad-hoc wireless net-
work, comprised of IEEE 802.11 PCMCIA cards, which carries the control and
data packets used in the application. For monitoring and as a diagnostic backup,
there is also a dedicated wired network consisting of an Ethernet switch and a
small hub. The hub connects two VisionServers to a DataServer and the network
switch.

The function of the vision system is to provide feedback to individual cars in
the form of position and orientation information. Two overhead cameras contin-
ually monitor the platform on which the cars are mounted, and serve as the only
sensors in the system. The video feed from each camera is sent over a cable to its
dedicated desktop PC, called a VisionServer, where image processing is done to
determine the orientations and locations of all the cars. To accomplish this, we
have placed six color patches on each car’s “roof,” in distinct patterns. This color
coding allows the vision system to distinguish cars. The vision system segments
each of the pixels in a frame into predetermined colors, then searches for groups
of colors, and identifies cars through their color patterns. When patterns are
correct, the vision system then extracts the location of the color patches and de-
termines the position and orientation of the car. The position information from
the two desktops is sent over an Ethernet cable to a DataServer laptop, which

6 Scott Graham and P. R. Kumar

in turn is connected to all the other laptops (controlling the cars) by the ad hoc
wireless network. Figure 1 shows the complete “loop” on the testbed.

For simplicity and malleability, we employ dedicated laptops (all running
Linux) for each radio controlled car. For now, the controller for each car runs
on its dedicated laptop. However, as described in the paper [9] describing the
software infrastructure and middleware aspects of this project, the next phase
of our software infrastructure development will involve automatic migration of
code so that the controller for a given car could be running on any of several
laptops. For example, computations can move to locations which have maximum
computational resource availability or require minimal communication resources.
Or, to enhance reliability without sacrificing efficiency, multiple controllers may
run on one laptop with other laptops standing by in case of controller failures.

Thus the entire system features multiple sensors (currently two vision sys-
tems, with more that can be added as necessary), multiple actuators (the fifteen
cars), and multiple computational resources, with loops closed over an ad hoc
wireless network.

We refer to systems of this type as Federated Control Systems [9]. In princi-
ple, we should be able to replace the cars with airplanes, vision systems with GPS
or other sensors, and have an air traffic control system. The architecture should
be the same. Or, should we replace the VisionServers with thermometers, door
sensors, motion detectors, and smoke detectors, and the cars with heating con-
trollers, sprinkling systems, lighting controllers, etc, the resulting system should
be an easily re-configurable total home control system.

But before such systems are common, they must be inexpensive, easy to use,
and useful.

4 The Importance of Proliferation

Proliferation is important for proliferation. There is positive feedback. Individ-
ual one-of-a-kind systems may serve to fill a particular need. But when these
systems are mass-produced, they become inexpensive, and the demand for their
use increases. This in turn leads to improvements, which further increases de-
mand, driving down cost, and so on. Many of the eventual uses may be of limited
value, and hence would never support large scale costs of development on their
own, but when the costs come down and are amortized over a huge number of
applications, these lower value needs will begin to drive the market.

Our goal is to address system design challenges arising when we move towards
this level of demand in the vision of convergence. We contend that the critical
ingredient involved in realizing this goal is architecture.

5 Importance of Architecture

Ultimately, the usefulness of an overarching design depends on how well it adapts
to the particular needs of an individual context, while at the same time captur-
ing the essence of that which is common across all the usages. The particular

The Convergence of Control, Communication, and Computation 7

useful variations of a product may not be known to the designers beforehand.
We believe that successful proliferation will depend on providing the right ab-
stractions and architecture for use by designers. We begin by providing some
examples of technologies which have successfully proliferated.

We contend, and this may be controversial, that the success of the Internet
is primarily architectural, and secondarily algorithmic, though protocols such as
TCP have played a most important role. Consider the OSI model of networks,
even though in practice it is not followed precisely. This model separates the
various functions of communication into layers of abstractions, giving a specific
purpose to each layer and hopefully enabling it to perform at that layer. (There
are many cross-layer design issues as well that deserve attention; see [10]). Ser-
vices at a layer can be oblivious to lower layers, and hence can focus on that
portion of the design which has been delegated to them. In order to interoperate,
we must, of course, provide interfaces between layers which are well-defined and
understood by both sides of the interface. With well-defined interfaces above
and below each layer in the protocol stack, it becomes possible to make changes
to an intermediate layer without affecting the other layers in the system. This
allows for incremental evolution. It gives the design longevity.

Consider the alternative of merging all the layers so the implementation runs
faster. Such a system would not have longevity since any small change would
necessitate the redesign of the entire system. It would simply not be conducive
to proliferation.

In addition to longevity, the overall scheme must provide a rich enough set
of abstractions to support individual uses. It must provide an architecture that
allows a designer to visualize where different aspects of a problem are solved and
where they are located.

Indeed, architecture is important for proliferation of technologies, in general.
Valiant [11] claims that the success of serial computation is due to the von
Neumann bridge, and contends that it is the lack of a von Neumann bridge that
is one of the reasons for the failure of certain efforts in parallel computation.

In communication, we contend that the separation of source coding from
channel coding has played a major role in the proliferation of digital communi-
cation. Indeed we argue that this structural result established by Shannon [12]
has been more important than the precise characterization of channel capacity.

Similarly, more important than the precise values of the feedback gains is the
closed-loop architecture of a control system. The very separation of the overall
system into a portion that cannot be modified, the “plant,” and a portion that
can be, the “controller,” is important, and is obvious only in retrospect. Indeed,
simulation software often does not make this distinction, with the result that
implementing certain policies may require digging into code where the plant and
controller interactions are intermingled.

These examples illustrate the fundamental and far reaching influence of ar-
chitecture on systems and motivate the desire to address the architecture appro-
priate for the convergence of control, communication, and computation.

8 Scott Graham and P. R. Kumar

6 Application Architecture for Ever Evolving Systems

We now turn to the issue of concern in the paper—how to design a large system
featuring a multiplicity of sensors and actuators.

Our approach is motivated by several fundamental considerations. The over-
arching issues are:

(i) The ever changing nature of a system,
(ii) The complexity of the design.

7 The Need for the Incremental Evolution of the Design

of Complex Systems

The first consideration is that the design of a large system is always in flux. It
is never at an end. As a system is built, new features are always added.

In the early mass production of WWII aircraft, US automobile manufactur-
ers assumed that automobile assembly-line methods would translate to aircraft
manufacturing, without a strong understanding of the additional complexity of
aircraft and the manufacturing precision required. Frequently, design changes
were required even before the first aircraft would come off the line. Rather than
change the assembly line, the fixes were often done in separate modification
centers. Even then, further changes were often made at front-line bases [13].

Similarly, it is erroneous to design today’s large and complex systems under
the assumption that software is easy to change, and therefore adaptable. The
ability of a system to adapt to changing requirements depends heavily on the
overall architecture of the system and the nature of the changes. Only if the sys-
tem is well-designed, with flexible architecture, can one hope that the resulting
system will be adaptable.

An important driver of change is “feature bloat,” though we do not use the
phrase in a pejorative sense. But it must be carefully managed. One starts with a
modest goal, and an eye toward future changes, and completes it reliably. Then
one inserts additional functionality to make the system more useful. Indeed,
this is an ever present feature of many software projects. (Successive versions of
Microsoft Word are just one prominent example).

Similarly, viewed from the usage end, customers do not always know what
they want or need at the beginning of a design cycle. Upon experiencing a new
capability, they may envision slight variations that would make the capability
more useful. Apparently small changes can, however, have large unintended neg-
ative effects as they ripple through the design of a complex system. Systems
should thus be well-designed a priori, to the extent possible, so as to be able to
incorporate this inevitable feature bloat, and insulate the risk of feature failure
from other parts of the system which must be reliable.

Incremental development may also be necessary from an economic point of
view in the proliferation and mass adoption of a technology. A system under de-
velopment for an extended period of time will not produce any financial support

The Convergence of Control, Communication, and Computation 9

for the developer during the development phase. Thus, for large development
efforts, it is useful to build the system in smaller increments, each of which pro-
vides an increase in functionality. This produces continuous revenue, making the
proliferation phase financially viable.

Incremental development also provides useful feedback in the design and
application of the system. As increments are tested, identified problems can be
resolved before future increments suffer from the need for redesign. We can see
this principle in the early development of our testbed. In the beginning, we
simply worked to get a single car running in open loop, according to a pre-
planned sequence of speed and steering commands. In this phase, the cars were
found to be too slow, and the motors unreliable. We did not need to have an
entire system working to discover this. Moreover, this discovery led to changes
in the motors and gearboxes which would have changed all of the calibration
data for each car. We had not yet invested time calibrating every car, thus early
feedback helped to avoid this time consuming task for the remaining cars. We
were also initially concerned about slack in the steering mechanism and hence the
repeatability of the cars performance. Several open-loop demonstrations proved
that the cars were sufficiently repeatable to meet our needs, thereby avoiding a
redesign of the steering which we had thought necessary.

Of course, incremental upgrades must be relatively simple to incorporate at
each stage. Moreover, it is useful to be able to “roll back” if an upgrade fails in
some fashion. This ability to “undo” is a challenge to system design, but provides
much needed flexibility to designers and users alike.

8 Design Goals for Application Architecture

Thus, we contend that complex system design must be regarded as a continuing
process. Our purpose is to address the issue of design of such a system so as to
meet two goals:

(i) Reliability.

(ii) Minimizing the time to design and deploy a new feature.

The need for reliability is now well accepted. Indeed, rather than “high per-
formance,” the focus of much of current software research is on “reliability.” It
may be referred to as robustness, or fault-tolerance, or perhaps security as well,
highlighting particular aspects of system reliability. In any case, reliability is now
entrenched as a primary performance criterion.

The second focus is on cost—in terms of human time. It is important to
reduce both the time to design a system, as well as the time to deploy it. In
fact, in our approach these go hand in hand. By abstracting certain aspects of
systems in appropriate ways, we aim to realize our ultimate vision that these
systems be “mass produced” rather than “hand crafted.” Our process aims to
reduce the process to one of designing an individual block and then easing its
implementation through a process of selecting among interoperable components

10 Scott Graham and P. R. Kumar

and setting appropriate constraints. Thus we aim to make one-of-a-kind systems
affordable and hence useful.

Our design process views the overall system as a composition of “decision-
making modules,” segregating levels of decision making to broadly conform to
commonly used and well understood methods for control system design, and
adopting an evolutionary approach that we call “Collation.” This provides sup-
port for reliability and evolution at many architectural layers.

9 The Levels and Modules of Decision Making

At the highest architectural level of any application is the system goal, which
may change over time. A clean architectural design separates goals at all levels
of decision making from the means to accomplish them.

High level goals are further instantiated or translated as they percolate
through the layers of the design to elements of the system that are more aware
of information that pertains to the optimization of the goals. One common re-
finement of goals is by time scale decomposition [14], though there are also other
possibilities such as, for example, spatial decomposition.

As one moves across layers, one finds perhaps several steps of control refine-
ment and data abstraction. As a concrete illustration, an air traffic controller
need not know the precise settings of the throttle on a particular aircraft, which
may however be of utmost interest to the pilot. Similarly, the pilot may be un-
aware of aircraft movement on the ground at the destination airport, even though
such movement will ultimately affect the pilot’s operating conditions. The air
traffic controller need only know the plane’s position, airspeed, and flight plan
in order to accomplish the higher level goal of ensuring flight safety, while the
pilot need only know if the flight plan is still acceptable to the controller, and
need not know about the flight plans of any other plane. Of course, a fail safe
mechanism is in place locally. Upon detecting an oncoming plane, a pilot will
change course for safety without clearing it with the air traffic controller who
probably does not have data at the level of refinement the pilot needs, or the
ability to make a decision fast enough to help.

From decision theory [15], we can regard any decision making unit as subject
to three “inputs.” First is the “goal,” which could, for example, be specified as
a cost function to be optimized. Second is the “model.” This provides the basis
for deciding what will be the result of actions, and thus allows us to choose
between different actions when seeking to optimize the cost function. Third is
the “information” available to the decision making unit. This could be noisy
measurements of say the locations of the cars, etc. The output of the decision
making module can be regarded as the optimal (or near optimal, or satisfactory)
choice of an action which does well by the goal, based on the model of the
environment, and the available measurements.

To illustrate these issues more concretely, in the Convergence Lab Testbed
we have a centralized top level planner called the ScheduleServer which is re-
sponsible for generating collision-free timed trajectories for each car along routes

The Convergence of Control, Communication, and Computation 11

which represent the high level goals of the system [16]. The goals may be speci-
fied merely as a triple comprising an origination location, an intermediate way-
point, and a final destination on the track. The server must then be able to
determine feasible paths which satisfy the constraints of the track, and then
schedule collision-free trajectories for each car.

The output of this plan is a set of timed way-points for each car. This is given
to the middle level in the task architecture, which is distributed. Specifically, each
car has its own mid-level controller called the Planner.

The ScheduleServer monitors the locations of the cars and determines when
something has gone wrong and re-plans, sending new trajectories which replace
the old ones. Figure 2 shows the goal decomposition/refinement on the testbed.

Fig. 2. Goal decomposition in the testbed

The Planner in normal mode merely passes the trajectory on to the low level
real-time controller which dutifully attempts to track the trajectory. However,
the Planner has also been given access to position and orientation information for
each of the other cars, or obstacles, on the track. By monitoring their movement,
the Planner can perform additional functions such as following another car in a
formation or in a pursuit-evasion scenario. It may also provide collision avoid-
ance by predicting potential collisions, which may occur even with collision-free
trajectories due to misbehaving cars, malicious cars, or simply dead batteries.
Upon detection of imminent collision, the Planner may simply stop the car to
prevent the collision, or instead plan an alternative path based upon some crite-
rion. This recovery planning then represents a mid-level goal. It is not the high
level goal, but represents refinement of a higher level goal as a result of addi-

12 Scott Graham and P. R. Kumar

tional information. Moreover, in the face of unpredicted behavior, it is able to
prevent system failure.

The low level real-time controller is myopic. In our case, we have traded
cheap computational power for algorithmic complexity. The real-time controller
uses a linearized model of the car and examines thousands of potential control
sequences, comparing the predicted results of each of them with the desired
result, choosing the one with the lowest cost, i.e., the one which most closely
follows the desired trajectory. Note that at this level, the goal is merely to
conform to the given trajectory. There is no understanding of higher goals such as
collision avoidance. Separation of concerns in this hierarchical structure greatly
simplifies the design, while providing flexibility at the same time.

It should be mentioned that there is really one more lower layer. The micro-
controller which sends signals to the car stores a sequence of controls, which for
fail-safe reasons is always terminated with a stop command. Failure to receive an
update from the low level real-time controller is thus handled appropriately in the
hardware/firmware level of the system. Such bottom end failsafe mechanisms are
necessary in safety critical applications and could even be implemented through
run-time invariance checking in micro-processors.

Using a proper task architecture, we have separated responsibility among the
various parts of the system. Incorporating new tasks is greatly simplified. For
example, if one of the cars represents an ambulance, and we want it to have
priority, then the only part of the system which is affected is the very top level
ScheduleServer which must be altered to give priority to it.

10 Reliability and Dependence

As noted earlier, the first attribute of “performance” may well be reliability,
which in turn has many dimensions.

In any system, certain portions of the system may depend on other parts
for its operation. A cellular phone clearly “depends” critically on its antenna to
complete a call. However, some dependencies are not inherently necessary, but
creep in as design or implementation dependencies1. For example, a laptop may
only “use” wall power to operate but does not “depend” on it since it has a bat-
tery. Complex systems exhibit complex dependencies which are difficult to trace,
and pose challenging troubleshooting problems. Many design or implementation
dependencies could perhaps be converted into “use” relationships. Consider the
power steering system in a car. If the power steering fails, the power assist to the
driver is gone, but the steering wheel remains physically connected to the move-
ment of the front wheels, allowing a driver to continue to drive safely, although
requiring increased effort.

To understand dependencies, it is useful to visualize the space of errors and
categorize them. We will enumerate a few for purposes of this discussion.

1 We are grateful to Professor Lui Sha for educating us about what the requirements
for reliability are in practice, and how to address them.

The Convergence of Control, Communication, and Computation 13

Execution. This includes all forms of system crashes, all segmentation faults,
all power failures, deadlocks, livelocks, infinite loops, and any other faults which
prevent a process from executing. There is a great deal of research on the pre-
vention of execution errors. We are interested in how to continue to operate in
the presence of such errors.

Timing. This includes any operation which does not return the result within
the deadline required. It is important in systems which interact with their envi-
ronment.

Semantic. This means that while the function proceeded and returned a result
by the deadline, its value was not correct in some sense. This could simply be a
design flaw, and is frequently ascribed to the application or domain expert.

11 Collation for Evolution

In keeping with traditional principles of functional programming, our design is
as modular as we are able to achieve. Thus the focus is on code reuse rather than
rewrite. When adding new features, our goal is to “insert” functionality rather
than revamp the existing architecture.

The ability to “undo” an action while word processing a document provides
tremendous flexibility. Similarly, instead of being critically dependent on correct
operation of a more complex implementation, we can merely use it when it
is satisfactory, and revert to a simpler version when it is not. It is therefore
reasonable to deduce that large complex systems must incorporate the ability
to switch between components when they fail or when increased functionality
is desirable, while maintaining system integrity in the face of faults, failures,
and changes in operational environments. Such capability must be built in, and
even itself upgradeable perhaps. Figure 3 presents the architectural construct,
or design pattern, of “Collation.”

Fig. 3. Collation architecture

14 Scott Graham and P. R. Kumar

The Convergence Testbed has experienced many system failures and system
upgrades as well as changes in the operational environment. As these changes
have occurred, we have observed the utility of a process of “Collation” as a design
pattern and have incorporated it wherever feasible. An example concerning the
incorporation of a vision data filter illustrates this method. In an early version
of the testbed, with just one car running, and just one camera, the vision system
was not responsible for identifying the car, but just reporting its position and
orientation. A reliable system for this functionality was in place, and the real-
time controller was able to use the raw vision data reliably for its operation.
Moreover, there was no need for a centralized store of vision data; therefore, the
DataServer was not yet implemented. The system performed its task of following
predetermined trajectories quite well in this early version. However, at a later
stage, to improve the smoothness of trajectory following, it was decided to add a
Kalman filter. This was done by adding it as a parallel block to an existing direct
breakthrough. During the debugging phase, the existing position and orientation
information which was “reliable” but not “very accurate” was used to monitor
the Kalman filter’s output. Figure 4 illustrates the Collation process applied to
the Kalman filter.

Fig. 4. Kalman filter inserted with Collation

This idea of Collation can be cast into the Simplex architecture of [17]. Sha,
et al. [18] have considered the use of a simple reliable controller as a backup
to a complex, unreliable controller. This method is based on using simplicity
to control complexity. The key notion is that the simple controller, previously
established to be reliable in some way, can always maintain stability of the
system and meet certain safety parameters provided that the system state is
within a well defined operating region, as for example, the basin of attraction
of its Lyapunov function. Then a smaller region is defined within which the
complex controller is given authority over the system. A supervisory process,
which must also be reliable, observes the system state in order to determine if

The Convergence of Control, Communication, and Computation 15

and when the complex controller will cause the system state to move outside
the basin of stability of the simple controller. When this occurs, the supervisor
switches control to the simple controller, thereby maintaining stability.

Collation encompasses more than redundant safety systems. It extends to
what we call “data fusion.” Consider multiple data sensors in a system. An air-
craft avionics system may receive position information from GPS, land based
beacons, and inertial navigation system, as well as manual updates from a nav-
igator. This data can be fused in several ways. Perhaps the data is averaged.
This works well if the data all have similar noise characteristics. But if one of
the sources were providing grossly erroneous data, averaging is not the best fu-
sion. Perhaps the system can compare all of the inputs and vote on which sources
are reliable. If multiple sources agree, then they are trusted and used. Of course,
as the fusion becomes more sophisticated, the likelihood of introducing errors
grows. So the Collation process provides the simple algorithms to run alongside
the complex versions just in case.

Another usage of Collation lies in assessing the effects of time-delays in the
incremental deployment of a more complex control system. Control systems are
generally sensitive to timing. Delays introduced into a stable control loop can
even render it unstable. A system designed with the ability to switch between
a stable version of a process and an experimental version, can accommodate
online development and testing safely. Consider, as a simple example, a filter
located somewhere along a control feedback loop. When a more sophisticated
filter is being entertained, the additional processing required for it may introduce
additional delay, which could render it worse than the original simpler design.
By applying the Collation design pattern, we are able to first program another
version of the simple filter that includes the additional delay, without any algo-
rithmic changes, and use the Collation process to switch between the original
and the delayed versions, monitoring the system for undesirable effects. Once
we have tested this sufficiently, we may then install the full functionality of the
complex filter and run it in place of the delayed version of the original filter.
Because of the supervisor, we can make these changes at run-time (in real-time)
without bringing down the system. Moreover, the original filter is still in place,
ready to be used in the event of undesirable behavior of the complex filter. So
Collation facilitates incremental operational testing by allowing low risk online
upgrade.

Yet another place where Collation is useful is in “planning.” Multiple plans
can be generated and evaluated, and the plan with the best performance can
be implemented. One example of this in the Testbed is in the mid-level Planner
which continuously monitors the vision data, predicting where cars will be in
the next several steps and comparing the current trajectory with those positions
in order to predict future collisions. Upon detection of a potential collision,
the Planner may create several alternative plans, perhaps a path to the left
of the collision, and perhaps one to the right. These alternate paths are then
checked for collisions, and if one is deemed successful, it is used. If not, the
desired behavior is to come to a stop, and the Planner accordingly stops the low

16 Scott Graham and P. R. Kumar

level controller, thereby avoiding a potential collision. Figure 5 shows Planning
inserted via Collation.

Fig. 5. Planning as Collation

These examples illustrate the fundamental ability to connect to, and select
among, multiple sources of data or control. Properly implemented, this func-
tionality provides for evolution, rollback or undo, and reliability. It provides a
separation of decision criteria, or rules, from the execution of the criteria. We
can implement implementing the Selector as a separate process from the other
components, we can create the Simplex Architecture for reliable on-line system
upgrade. By choosing among many pieces of source code for compilation, the
process can be called software configuration management. When multiple exter-
nal components can connect to a single component (which can in turn provide
its output to multiple external components) and each component has local “in-
telligence” contained in the Supervisor to govern its action, we can realize an
interoperable Federated Control System. If such “intelligence” includes rules for
fail-safe operation, then the system has fail-safe at that level of abstraction.

Collation bears a resemblance to object oriented design. In aggregation or
hierarchical composition, each element of the Collation architecture can be a
trivial one, or a very complex system of its own, or something in between. Thus,
Collation exhibits a self-similar nature useful for hierarchical construction and
decomposition.

The design pattern that we call Collation combines widely used principles into
a useful architectural construct. Whether or not a system realizes the benefits of
connection to and selection among multiple sources depends upon the software
design of the underlying infrastructure.

A movie showing several applications of the functioning system is available
on the Testbed website [19].

The Convergence of Control, Communication, and Computation 17

12 Concluding Remarks

The architect Christopher Alexander argues in [20] that in any system underlying
patterns of use exist. The principles, or forces, which drive the use of that system
must be understood, in order to design it in such a way that it comes alive, which
is to say that it fulfills the purpose of its creation. Many systems may experience
similar kinds of forces, and patterns of design then emerge which can be seen
throughout many similar structures.

We believe that identification of such “design patterns”[21], incorporating
them into the architecture, providing the infrastructure that allows routine de-
ployment of converged systems, and providing the designer with a rich set of
abstractions, is critical to realizing the convergence of control with communica-
tion and computation.

References

1. “Internet Domain Survey,” Internet Software Consortium, Jan 2003.
http://www.isc.org/ds/WWW-200301/index.html.

2. “How Many Online?”, Nua Internet Surveys, 2003.
http://www.nua.ie/surveys/how many online/.

3. J. Stankovic, “VEST: A Toolset For Constructing and Analyzing Component Based
Operating Systems for Embedded and Real-Time Systems,” University of Virginia
TRCS-2000-19, July 2000.

4. K. Carter, A. Lahjouji, N. McNeil, “Unlicensed and Unshackled: A Joint OSP-
OET White Paper on Unlicensed Devices and Their Regulatory Issues,” May 2003,
http://hraunfoss.fcc.gov/edocs public/attachmatch/DOC-234741A1.doc.

5. V. Lipset, “In-Car Bluetooth To Grow Beyond Telephony, Study Says” May 23,
2003 http://www.thinkmobile.com/Everything/News/00/67/32/.

6. “Wireless Sensor Networks,” CrossBow Technology Inc,
http://www.xbow.com/Products/Wireless Sensor Networks.htm.

7. S. S. Pradhan and K. Ramchandran, “Distributed source coding using syndromes
(DISCUS): Design and construction,” Proceedings of the IEEE Data Compression
Conference (DCC), Snowbird, Utah March 1999.

8. R. Shukla, P. L. Dragotti, M. N. Do, M. Vetterli, “Rate-distortion optimized tree
structured compression algorithms for piecewise smooth images (448 kB),” IEEE
Transactions on Image Processing, Jan. 2003, submitted.

9. G. Baliga and P. R. Kumar, “Middleware Architecture for Feder-
ated Control Systems,” IEEE Distributed Systems Online, June 2003,
http://dsonline.computer.org/0306/f/bal.htm.

10. V. Kawadia, P.R. Kumar, “A Cautionary Perspective on Cross Layer
Design,” Technical Report, CSL, University of Illinois, Jun 28, 2003.
http://black1.csl.uiuc.edu/∼prkumar/ps files/Cross Layer.ps.

11. L. G. Valiant, “A Bridging Model for Parallel Computation.” Communications of
the ACM, vol. 33, no. 8, August 1990.

12. C. E. Shannon, “A Mathematical Theory of Communications,” Bell System Tech-
nical Journal, vol. 27, pp. 379–423 and 623–656, July and October, 1948 (2 parts).

13. J. Rumerman, “The American Aerospace Industry Dur-
ing World War II,” US Centennial of Flight Essay, 2003,
http://www.centennialofflight.gov/essay/Aerospace/WWII Industry/Aero7.htm.

18 Scott Graham and P. R. Kumar

14. S. B. Gershwin, Manufacturing Systems Engineering, Prentice-Hall, Englewood
Cliffs, NJ 1994.

15. D. Blackwell and M. Girschick, Theory of games and statistical decisions, Wiley,
New York, NY, 1954.

16. A. Giridhar and P. R. Kumar, “Scheduling Traffic on a Network
of Roads,” Technical Report, CSL, University of Illinois, Apr 2003.
http://black1.csl.uiuc.edu/∼prkumar/ps files/trafficpaper.ps.

17. L. Sha, R. Rajkumar, and M. Gagliardi, “The Simplex Architecture: An Approach
To Building Evolving Industrial Computing Systems,” Proceedings of the Interna-
tional Conference on Reliability and Quality in Design, pp. 122–126, Seattle, Wash-
ington, Anaheim, CA, ISSAT Press, March 16-18, 1994.

18. L. Sha, R. Rajkumar, and M. Gagliardi, “Evolving Dependable Real Time Sys-
tems,” Proceedings of IEEE Aerospace Conference, Vol. 1, pp. 335-346, Aspen, Col-
orado, IEEE Computer Society Press, February 3-10, 1996.

19. “The Convergence Laboratory testbed,” University of Illinois,
http://black1.csl.uiuc.edu/∼prkumar/testbed/.

20. C. Alexander, The Timeless Way of Building, Oxford University Press, Oxford,
UK, 1979.

21. E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software, Addison-Wesley, Boston, MA, 1995.

