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1 INTRODUCTIONThe problem of stohasti adaptive ontrol of linear ARMAX systems hasreeived onsiderable attention over the past deade. The notable pioneeringontributions are due to �Astr�omand Wittenmark [1℄ and Ljung [2,3℄. Subse-quently, Goodwin, Ramadge and Caines [4℄ and Goodwin and o-workers [5℄have proved the self-optimality of some adaptive ontrol algorithms for min-imum variane regulation and traking. By self-optimality it is meant thatthe ost, the time average of the square of the traking error, is minimal.Reently a stohasti gradient algorithm has been proved to be self-tuning for the regulation problem, see [6℄. (Reall that in the regulationproblem one wants the output of the system to stay as lose as possibleto zero, whereas in the traking problem one wants to trak a given arbi-trary trajetory). By \self-tuning" it is meant that the adaptive ontrol lawonverges to the optimal ontrol law. This is learly a property of funda-mental interest sine it implies that the adaptive ontroller an be used asa mehanism for tuning to the parameters of an optimal ontrol law.In this paper we examine the problem of minimum variane trakingwhere the goal is to ensure that the output of the system traks a spei�edreferene trajetory with minimal average squared traking error.From a purely tehnial viewpoint the analysis of the traking problemalong the lines of [6℄ has until now been stymied by the fat that a keygeometri property of the adaptive ontrol algorithm, whih renders theregression and parameter estimate vetors orthogonal, holds only in theregulation problem and not in the ase of traking. Our �rst ontributionhere is to show how to overome this diÆulty by enlarging the dimensionof the regression vetor.Another well known diÆulty with the traking problem is that whenthe referene trajetory to be traked is a general non-zero trajetory (weall this the general traking problem), then the ontrol law whih allowsthe trajetory to be traked with minimum variane does require expliitknowledge of the oeÆients of the olored noise polynomial, see [4℄, [6℄,[12℄. This is another feature distinguishing the traking problem from theregulation problem. Consequently, it is neessary to identify some additionalparameters pertaining to the olored noise polynomial in order to obtain self-tuning. Suh identi�ation is established in this paper under the naturalassumption that the referene trajetory is suÆiently rih of appropriateorder.The seond essential ontribution of this paper is the examination of how2



one may obtain self-tuning when the referene trajetory is not so rih as toallow one to identify all the oeÆients of the olored noise polynomial. Forexample, in an important lass of pratial problems, alled set-point prob-lems, the output of the system is required to stay as lose as possible to aertain spei�ed level. Thus the referene trajetory is a non-zero onstant,whih is suÆiently rih of order one only. We examine suh problems, whihviolate the rihness assumptions of the general traking problem, by exam-ining the problem of following trajetories whih are generated by linearmodels. We all these the linear model following problems. (The set-pointproblem is a speial ase of the linear model following problem). Our seondlass of main results is to show how one may adjust the dimension of the re-gression vetor to the degree of exitation present in the referene trajetory.We then provide a proof of self-tuning of the resulting redued dimensionadaptive ontrollers.Our main results are therefore the following:(i) The adaptive ontrol laws in both the general traking problem as wellas the linear model following problem are self-optimal, i.e., the averagesquared traking error is minimal (Theorem 3).(ii) In the general traking problem, if the referene trajetory is suÆ-iently rih of order at least equal to the sum of the degrees of theontrol and noise polynomials in the ARMAX representation of thesystem, then the parameter estimates are strongly onsistent, i.e., theyonverge to the true values almost surely (Theorems 6,7). This resultalso implies that the adaptive ontroller is self-tuning, i.e., the adaptiveontrol law onverges to the optimal ontrol almost surely (Theorem7).(iii) For the parameter estimates to be strongly onsistent in the linearmodel following problem it is enough for the order of suÆient rih-ness of the referene trajetory to be equal to the degree of the noisepolynomial alone (Theorems 6 and 7). This again implies self-tuning(Theorem 7).(iv) Often, the degree of suÆient rihness is even smaller than the degreeof the noise polynomial (e.g., the set-point problem). In suh linearmodel following problems, a lower dimensional adaptive ontroller anbe used. This lower dimensional adaptiver ontroller is self-tuning(Theorem 7). The parameter estimates also onverge (Theorem 6).3



However, sine no attempt is made at estimating all the oeÆients ofthe noise polynomial, the parameter estimates do not onverge to thetrue values (i.e., we are using a diret adaptive ontrol law).Some omments on the nature of these results in omparison with theresults in deterministi adaptive ontrol are useful. In deterministi adaptiveontrol, where there is no noise in the system, one an asymptotially obtainzero traking error. However in stohasti adaptive ontrol there is noiseand one wants to rejet as muh of the noise as possible. Clearly optimalnoise rejetion will depend ritially on the knowledge of the orrelationsinherent in the possibly olored noise. This is where the entral problem ofestimating the olored noise oeÆients enters into the stohasti adaptiveontrol problem. Indeed, in the present paper, the need for rihness in thereferene trajetory is intimately related preisely to the need for estimatingthe model of the olored noise.2 The Adaptive Control LawsWe onsider the ARMAX systemy(t) = pXi=1 aiy(t� i) + qXi=1 biu(t� i) + sXi=1 iw(t� i) + w(t) (1)where y, u and w are, respetively, the output, input and white noise. Theparameters (a1; : : : ; ap; b1; : : : ; bq; 1; : : : ; s) are unknown. The goal is to de-sign an adaptive ontrol law whih ensures that the output follows a givenbounded referene trajetory fy�(t)g with minimal average squared trak-ing error, and suh that the adaptive ontrol law asymptotially self-tunesto the optimal ontrol law. It is an added bonus if the true parameters(a1; : : : ; ap; b1; : : : ; bq; 1; : : : ; s) an also be asymptotially identi�ed.If the referene trajetory is arbitrary, we shall refer to this problemas the general traking problem. In many problems however the referenetrajetory is generated as the output of a linear model. We shall refer to suha speial ase as the linear model following problem. The speial propertiesof a referene trajetory generated as the output of a linear model an beusefully exploited, as we will see in the sequel. We now disuss separatelythe general traking problem and the linear model following problem.
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2.1 The General Traking ProblemIn this ase fy�(t)g is just a referene trajetory to be traked with no speialproperties. We will use the following adaptive ontroller (with the notationp _ s := max(p; s)).�(t+ 1) = �(t) + ��(t)r(t) [y(t+ 1)� y�(t+ 1)℄ (2)where, for the time being, 0 < � < 2 is an arbitrary onstant (but see theremark at the end of Setion 4),r(t+ 1) := 1 + t+1Xk=0�T (k)�(k); (3)�(t) := (y(t); : : : ; y(t� p _ s+ 1); u(t); : : : ; u(t� q + 1);�y�(t+ 1); : : : ;�y�(t� s+ 1)) (4)u(t) := �1�1(t) "p_sXi=1 �i(t)y(t� i+ 1) + qXi=2 �i(t)u(t� i+ 1)� sXi=0 i(t)y�(t� i+ 1)#(5)where (�1(t); : : : ; �p_s(t); �1(t); : : : ; �q(t); 0(t); : : : ; s(t))T := �(t): (6)Note that (5) an equivalently be written as�T (t)�(t) = 0: (7)The motivation behind this adaptive ontroller is the following. Rewritethe system (1) as,y(t+ 1)� y�(t+ 1) = " pXi=1 aiy(t+ 1� i) + qXi=1 biu(t+ 1� i) + sXi=1 iw(t+ 1� i)� y�(t+ 1)#+w(t+ 1):If one ould observe the past of w(�) at eah time t, then an optimal ontrollerwould hoose u(t) so that the term in [��℄ on the right-hand side above iszero, i.e.,u(t) = �1b1 " pXi=1 aiy(t+ 1� i) + qXi=2 biu(t+ 1� i) + sXi=1 iw(t+ 1� i)� y�(t+ 1)# ;5



for this would result in y(t+ 1) = y�(t+ 1) + w(t + 1), learly yielding thebest possible traking error. However, the sequene w(�) is not observed,and so let us replae it by y(�) � y�(�), whih is what we hope it would be,at least asymptotially. This gives the implementable ontrol law,u(t) = �1b1 "p_sXi=1(ai + i)y(t+ 1� i) + qXi=2 biu(t+ 1� i)� sXi=1 iy�(t+ 1� i)� y�(t+ 1)# :It an be shown that this ontrol law is atually optimal with respet to thelong run average of the square of the traking error; for more details, see[12℄. Let us de�ne,�Æ := (a1 + 1; : : : ; ap_s + p_s; b1; : : : ; 1; 1; : : : ; s)T (8)(where, for onveniene, we de�ne i := 0 for i > s and ai := 0 for i > p in(8)), and, under optimal ontrol, the system (1) an be represented asy(t+ 1)� y�(t+ 1) = �T (t)�Æ + w(t+ 1);while the optimal ontrol law an be written as one whih hooses u(t) tosatisfy, �T (t)�Æ = 0:Our adaptive ontrol sheme (2)-(6) an be interpreted as trying to estimate�Æ when the system is being optimally ontrolled.Remark: Note that the (p _ s+ q + 1)th omponent of �Æ is 1, andhene is a known quantity. However, the estimator ignores this knowledgeand estimates it anyway by 0(t). We an therefore regard (2), (3) as anunnormalized parameter estimator. It follows that this parameter estimatoris one dimension larger than that onsidered in Goodwin, Ramadge andCaines [4℄. In this onnetion, it is also of interest to note that reentlyWei [7℄ has proposed an estimator for the regulation problem whih is onedimension less than [4℄, [6℄.2.2 The Linear Model Following ProblemIn many situations of interest the referene trajetory is generated, at leastasymptotially, as the output of a linear model. We shall suppose that thereis a sequene fym(t)g suh thatym(t) = lXi=1 hiym(t� i) (9)6



and the trajetory to be traked y�(t) is asymptotially lose to ym(t) inthat 1Xt=1(y�(t)� ym(t))2 < +1: (10)Without loss of generality we an make the following two assumptions:There is no lower order di�erene equation satis�ed by fym(t)g, i.e., thereis no nontrivial polynomial H(z) of degree stritly less than l suh thatH(z)ym(t) = 0 for all t. (z is the bakward shift operator). (11a)The roots of H(z) := 1�Pli=1 hizi are exatly on the unit irle and thereare no repeated roots. (11b)Assumption (11a) is without loss of generality sine otherwise we ouldsimply replaeH(z) in (9) byH(z). Note that this also means that the initialonditions on (9) are suÆient to exite all the modes of H(z). Assumption(11b) is also without loss of generality due to the following reasons. First,sine we intend to work only with bounded fy�(t)g, and sine all the modesof H(z) are exited, we have to assume that H(z) has roots on or outsidethe unit irle, and also that the roots on the unit irle are not repeated.However, sine we are only interested in the asymptoti behavior of fy�(t)g,we an eliminate all the modes orresponding to roots of H(z) whih arestritly outside the unit irle, sine they deay geometrially to 0. Thisleaves us with (11b).It is worth noting that (11a) and (11b) together imply thatym(t) = d0 + d1(�1)t +X di sin(!it+ Æi):Depending on how large l is, we will use adaptive ontrollers with pa-rameter estimators of di�erent dimensions.Case 1: l � s. Reall that s is the degree of the noise polynomial in (1).When l � s, we will redue the dimension of the parameter estimator by(s+ 1� l) omponents by replaing (4-6) by the following:�(t) := (y(t); : : : ; y(t� p _ s+ 1); u(t); : : : ; u(t� q + 1);�y�(t+ 1); : : : ;�y�(t+ 2� l))T ; (12)�(t) := (�1(t); : : : ; �p_s(t); �1(t); : : : ; �q(t); 0(t); : : : ; l�1(t))T ; (13)7



andu(t) = �1�1(t) "p_sXi=1 �i(t)y(t� i+ 1) + qXi=2 �i(t)u(t� i+ 1)� l�1Xi=0 i(t)y�(t� i+ 1)# ;(14)or equivalently by (7).The idea underlying the above adaptive ontrol law is the following.If the parameters were known the minimum variane adaptive ontrol lawwould be,u(t) = �1b1 "p_sXi=1(ai + i)y(t� i+ 1) + qXi=2 biu(t� i+ 1)� y�(t+ 1)� sXi=1 iy�(t� i+ 1)# ;see [12℄ for details. In this ontrol law the only terms featuring y� arey�(t+ 1) +Psi=1 y�(t� i+ 1) = C(z)y�(t+ 1). Thus the ontrol law reallyonly requires knowledge of C(z)y�(t). LetG(z) := l�1Xi=0 gizi (15)be a polynomial satisfying,C(z) = F (z)H(z) +G(z) (16)for some F (z) := s�lXi=0 fizi: (17)Suh polynomials G(z) and F (z) are the remainder and quotient, respe-tively, when the polynomial C(z) is divided by the polynomial H(z). Then,asymptotially at least,C(z)y�(t) = [F (z)H(z) +G(z)℄y�(t) = F (z)H(z)y�(t) +G(z)y�(t) = G(z)y�(t);sine by (9, 10), H(z)y�(t) = 0 holds asymptotially. Thus we only needknowledge of G(z)y�(t) in order to implement the true minimum varianeontrol law. We an therefore interpret the parameter estimate (13) as tryingto estimate�Æ := (a1 + 1; : : : ; ap_s + p_s; b1; : : : ; bq; g0; g1; : : : ; gl�1)T : (18)8



Remarks:(i) The adaptive ontroller need not be provided with the preise infor-mation about what the polynomial H(z) is. It only needs knowledgeof the degree of H(z).(ii) It should be noted that the parameter estimator is no more \unnor-malized," sine the oeÆients g0; : : : ; gl�1 are all unknown.Case 2: l � s + 1. Sine (s + 1 � l) � 0 when l � s + 1, no savings indimensionality an be ahieved. Hene we will use the same adaptive ontrollaw as (2-7). For this ase also we de�ne �Æ as in (8).3 SuÆient RihnessIn the sequel we will prove that all the oeÆients (a1; : : : ; ap; b1; : : : ; bq; 1; : : : ; s)an be asymptotially identi�ed when the referene trajetory fy�(t)g is\suÆiently rih" in an appropriate sense. We have the following de�nition.De�nition (18). We shall say that a salar sequene fy�(t)g is stronglysuÆiently rih of order l if l is the largest non-negative integer for whihthere exists an n and an � > 0 suh thatt+nXk=t+1(y�(k � 1); : : : ; y�(k � l))T (y�(k � 1); : : : ; y�(k � l)) � �Il foralltlargeenough:Il here is the l � l identity matrix.The following property of fym(t)g, and also fy�(t)g, generated by thelinear model (9), (10), (11a), 11b) should be noted.Lemma 1. Suppose fy�(t)g and fym(t)g satisfy (9)-(11b). Then bothfy�(t)g and fym(t)g are strongly suÆiently rih of order l.Proof: We will show that there exists � > 0 suh thatt+lXk=t+1 Yl(k � 1) � �IlforalltlargeenoughwhereYl(k � 1) := (ym(k � 1); : : : ; ym(k � l))T (ym(k � 1); : : : ; ym(k � l)):9



Suppose this is not true. Then there exists a sequene of vetors fx(tn)g,with eah kx(tn)k = 1 and x(tn) =: (x1(tn); : : : ; xl(tn))T suh thatxT (tn) tn+lXk=tn+1 Yl(k � 1)x(tn) � 1n:We an also assume without loss of generality that limn x(tn) =: x existswith kxk = 1, x := (x1; : : : ; xl)T . Moreover, sine fym(t)g is bounded,fYl(k � 1)g is also bounded and solimn xT tn+lXk=tn+1Yl(k � 1)x = 0:Let X(z) := Pli=1 xizi. Interpreting z as the bakward shift operator, wehave limn tn+lXk=tn+1[X(z)ym(k)℄2 = 0:This implies thatlimn X(z)ym(tn + i) = 0 fori = 1; 2; : : : ; l:Now note that H(z)X(z)ym(t) = X(z)H(z)ym(t) = 0 and soX(z)ym(t) = lXk=1 Æk�tkwhere f�kg is the set of roots of H(z). Hene we havelimn lXk=1 Æk�tn+ik = 0 fori = 1; : : : ; l:This an also be written aslimn 266664 1 1 1 1 1 1�1 �2 �l... ... ... ... ... ...�l�11 �l�12 �l�11 377775266664 �tn+11 0 0 0 0 00 �tn+12 0... ... ... ... ... ...0 0 �tn+11 377775266664 Æ1Æ2...Æl 377775 = 0:10



The �rst matrix on the left-hand side above is the Vandermonde matrixwhih is nonsingular sine all the �k's are distint. Moreover j�kj = 1 for allk, and so it follows that Æk = 0 for k = 1; : : : ; l. This however implies thatX(z)ym(t) = 0 for all t. However X(z) is a polynomial of degree l�1 or less,and by (11a), it follows that X(z) = 0, i.e., kxk = 0. This is a ontraditionto kxk = 1, proving that fym(t)g is indeed strongly suÆiently rih of orderl. By (10) it follows trivially that fy�(t)g is also strongly suÆiently rih oforder l. (Atually it is enough that limt(ym(t)� y�(t)) = 0).For future referene, we also have the following result.Lemma 2. Let S(t; z) := Pji=0 si(t)zi. Suppose fsi(t)g is bounded fori = 0; : : : ; j and limt jsi(t)� si(t�1)j = 0 for i = 0; : : : ; j. Suppose also thatfor some sequene fx(t)g,limN 1N NXt=1[S(t; z)ym(t)℄2 = 0 and limN 1N NXt=1 x2(t) = 0:Then there exists a ommon subsequene ftkg with limk x(tk) = 0 andlimk S(tk; z) = K(z)H(z) for some polynomial K(z). (By S(t; z)ym(t) wemean Pji=0 si(t)ym(t� i).Proof: Sine limt jsi(t)�si(t+n)j = 0 for every n and fym(t)g is bounded,it is also true that limN 1=NPNt=1[S(t+n; z)ym(t)℄2 = 0 for every n. Henewe an sum over n and also add x2(t) to getlimN 1N NXt=1(x2(t) + lXn=1[S(t; z)ym(t� n)℄2) = 0:Hene there is a subsequene ftkg suh thatlimk S(tk; z)ym(tk � n) = 0 forn = 1; : : : ; l limk x(tk) = 0:Further we an also assume without loss of generality thatlimk S(tk; z) =: S(z)exists, by whih we mean that limk si(tk) =: si exists for i = 0; : : : ; j andS(z) :=Pji=0 sizi. Further, sine fym(t)g is bounded, it follows thatlimk S(z)ym(tk � n) = 0 forn = 1; : : : ; l:11



Note that H(z)S(z)ym(t) = 0 for all t, and soS(z)ym(t) = lXn=1 Æn�tnwhere f�ng is the set of roots of H(z). Proeeding just as in the proof ofLemma 1, it follows that S(z)ym(t) = 0 forallt:Now let U(z) be the greatest ommon divisor of S(z) and H(z). Then thereexist polynomials R(z) and T (z) suh that R(z)S(z) + T (z)H(z) = U(z).Hene U(z)ym(t) = 0 for all t. However, sine the degree of U(z) is lessthan or equal to l, it follows from (11a) that U(z) = �H(z), for some salar�, and so the Lemma is proved.4 AssumptionsDe�ne the polynomials A(z) := 1� pXi=1 aiziB(z) := qXi=1 bizi�1C(z) := 1 + sXi=1 izi:Throughout this paper we employ the following assumptions only.All the roots of B(z) and C(z) are stritly outside the unit irle. (19a)Re[C(ei!)� �2 ℄0for0 � !2� (19b)b1! = 0 (19)z�1[C(z)�A(z)℄ and B(z) are polynomials of degrees respetively equalto (p _ s� 1) and (q � 1), whih have no ommon fators. (19d)fw(t)g is a sequene of salar random variables on a probability spaef
; F; Pg, whose distributions are all mutually absolutely ontinuous12



with respet to Lebesgue measure. (19e)Let fFt := �w(1); : : : ; w(t)g be the sub-�-algebra of F generated byfw(1); : : : ; w(t)g. We assume that there are �20 and Æ0 suh that (19f)E[w(t)jFt�1 ℄ = 0a:s:E[w2(t)jFt�1℄ = �2a:s:supt E[jw(t)j2+Æ jFt�1℄ +1a:s:jj�(0)jj0 (19g)fy�(t)g is bounded. (19h)It should be noted that the ondition (19e) guarantees that the ontrols arewell de�ned a.s. through (5.14) sine the event f�1(t) = 0g is a null event,see Caines and Meyn [9℄.Remark: Let us onsider a di�erent onstant �1 in plae of � in (2). It iseasy to verify, see [12℄, that the resulting adaptive ontrol algorithm produesparameter estimates �1(t) = �1=��(t) and idential inputs and outputs asthe original algorithm using �, provided �1(0) is hosen as �1(0) := �1=��(0).This property relies on the fat that the ontrol input u(t) is invariant withrespet to saling of �(t) in (7). Making use of this observation it followsthat one need not restrit � to lie in (0; 2); it is enough to have � 6= 0.Further, one only needs the assumptionReC(ei!)0for0 � !2� (19i)in plae of (19b).5 Self-OptimalityIn this setion we will prove the following Theorem whih asserts, amongother things, that in all ases the adaptive ontroller minimizes the averagesquared traking error.Theorem 3. limN 1N NXt=1[y(t)� y � (t)℄2 = �2a:s: (20a)limN 1N NXt=1(E[y(t+ 1)� y � (t+ 1)jFt℄)2 = 0a:s: (20b)13



limN 1N NXt=1 u2(t) +1a:s: (20)limt jj�(t)� �Æjj2existsandis�nitea:s: (20d)Proof: We will abbreviate those details of the proof whih are similar tothose of Goodwin, Ramadge and Caines [4℄ or [6℄. Let e�(t) := �(t)� �Æ andde�ne V (t) := ke�(t)k2. Using r(t) � �T (t)�(t) and �T (t)e�(t) = ��T (t)�Æ,we an getE[V (t+ 1)jFt℄ � V (t)� 2�r(t) ��T (t)�Æ � �+ Æ2 E[y(t+ 1)� y�(t+ 1)jFt℄��E[y(t+ 1)� y � (t+ 1)jFt℄��Ær(t) (E[y(t+ 1)� y�(t+ 1)jF t℄)2+�2�T (t)�(t)r2(t) �2for all Æ. Choose Æ > 0 so small that [C(z) � (� + Æ=2)℄ is stritly positivereal. Let us �rst onsider the following ase.Case 1: General traking problem or the linear model following problemwith l � s+ 1.C(z)E[y(t+ 1)� y�(t+ 1)jFt℄ = C(z)[y(t+ 1) � y�(t+ 1)� w(t+ 1)℄= [y(t+ 1)� y�(t+ 1)�w(t+ 1)℄+[C(z)� 1℄[y(t+ 1)� y�(t+ 1)� w(t+ 1)℄= [y(t+ 1)� y�(t+ 1)�w(t+ 1)℄+Psi=1 i[y(t� i+ 1)� y�(t� i+ 1)� w(t� i+ 1)℄= [y(t+ 1)� w(t+ 1)�Psi=1 iw(t� i+ 1)℄� y�(t+ 1)+Psi=1 i[y(t� i+ 1)� y�(t� i+ 1)℄= Pp_si=1(ai + i)y(t� i+ 1) +Pqi=1 biu(t� i+ 1)�y�(t+ 1)�Psi=1 iy�(t� i+ 1)= �T (t)�Æ:
(21)

By the strit positive realness of [C(z)� (�+ Æ)=2℄ it therefore follows thatS(n) := 2� nXt=1��T (t)�Æ � �+ Æ2 E[y(t+ 1)� y�(t+ 1)jFt℄�E[y(t+ 1)� y�(t+ 1)jFt℄� Ka.s. for all n, for some K:14



De�ning M(t) := V (t) + S(t� 1)=r(t� 1), and using r(t) � r(t� 1) > 0, itfollows thatE[M(t+ 1)jFt℄ � M(t)� �Ær(t)(E[y(t+ 1)� y�(t+ 1)jFt℄)2 + �2�T (t)�(t)r2(t) �2:The last term above is summable a.s., and so using the Positive Near Su-permartingale Convergene Theorem we an get:(i) fM(t)g onverges a.s.,(ii) P1t=1 (E[y(t+1)�y�(t+1)jFt℄)2r(t) < +1a:s:Now we laim that limt r(t) = +1 a.s. Otherwise rt = 1 +Pti=1 �T (k)�(k)would lead to limt �(t) = 0 on a set of positive probability. This in turnwould imply limt yt = 0 and limt ut = 0, and from the system equation (1)it would then have to follow that limt C(z)w(t) = 0 on a set of posi-tive probability, whih we will now ontradit as follows. First note that(C(z)w(t))2 = a linear ombination of terms of the form w2(t � i) andw(t� i)w(t� j). Let us �rst examine the �rst set of square terms. As a on-sequene of (19f) and Jensen's and Minkowski's inequalities, it follows thatsuptE[jw2(t)�E(w2(t)jFt�1)j1+Æ=2jFt�1℄1 a.s. Chow's Theorem [10, The-orem 3.3.1℄ is therefore appliable, and shows that limN 1=NPNt=1 w2(t) =�2 a.s. Now we turn to the ross terms. Sine P1t=1 w2(t � i) = 1a.s., an appeal to the Loal Convergene Theorem for Martingales [11,Lemma 2.3℄ shows that PNt=1 2w(t � i)w(t) = o(PNt=1 w2(t� i)) a.s. HenelimN 1=NPNt=1 w(t � i)w(t) = 0 a.s. Adding up the ontributions we getlimN 1=NPNt=1(C(z)w(t))2 = 1+Psi=1 2i > 0 a.s. This provides the requiredontradition.Sine limt r(t) = +1 a. s., Kroneker's Lemma is appliable and giveslimN 1r(N) NXt=1(E[y(t+ 1)� y�(t+ 1jFt℄)2 = 0a:s:Utilizing the stritly minimum phase property of B(z) it follows that fr(N)=Ngis bounded a.s., whih proves (20) and (20b). The same arguments as inLemma 7 and Lemma 9 of [6℄ yield (20a) and (20d).Case 2: Linear model following problem with l � s. Just as in (21) westill getC(z)E[y(t + 1)� y�(t+ 1)jFt℄ = p_sXi=1(ai + i)y(t� i+ 1) + qXi=1 biu(t� i+ 1)�C(z)y�(t+ 1):15



Let ~y(t) := ym(t)� y�(t). Then from (9) and (16) we getC(z)y�(t+ 1) = C(z)ym(t+ 1)�C(z)~y(t+ 1)= G(z)ym(t+ 1)�C(z)~y(t+ 1)= G(z)y�(t+ 1) + [G(z)�C(z)℄~y(t+ 1):HeneC(z)E[y(t + 1)� y�(t+ 1)jFt℄ = p_sXi=1(ai + i)y(t� i+ 1) + qXi=1 biu(t� i+ 1)�G(z)y�(t+ 1) + [C(z)�G(z)℄~y(t+ 1)= �T (t)�Æ + [C(z)�G(z)℄~y(t+ 1):By the strit positive realness property of [C(z)� �+ Æ=2℄, it follows thatS(n) := 2� nXt=1 n�T (t)�Æ + [C(z)�G(z)℄~y(t+ 1)��+ Æ2 E[y(t+ 1)� y�(t+ 1)jFt℄��E[y(t+ 1)� y�(t+ 1)jFt℄� K a.s. for all n, for someK:De�ning M(t) := V (t) + S(t� 1)=r(t� 1), we getE[M(t+ 1)jFt℄ � M(t)� �Ær(t)(E[y(t+ 1)� y�(t+ 1)j Ft℄)2 + �2�T (t)�(t)r2(t) �2+ 2�r(t)E[y(t+ 1)� y�(t+ 1)jFt℄[C(z)�G(z)℄~y(t+ 1):De�ne y(t) := [C(z)�G(z)℄~y(t+1), and note that by (10),P1t=1 y2(t) < +1.For any � > 0, we have2E[y(t + 1) � y�(t+ 1)jFt℄y(t) � �2(E[y(t+ 1)� y�(t+ 1)jFt℄)2 + �y(t)� �2 :Hene, hoose � so small that (�Æ � 2��2) > 0, and note thatE[M(t+ 1)jFt℄ � M(t)� (�Æ � 2��2)r(t) (E[y(t+ 1)� y�(t+ 1)jFt℄)2+�2�T (t)�(t)r2(t) �2 + 2�y2(t)�2r(t) :16



Now both of the last two terms are summable, and so we an again use thePositive Near Supermartingale Convergene Theorem. The rest of the proofis similar to the previous ase.By (20a) of the above Theorem, we see that usage of the adaptive on-troller leads to a value of �2 for the average of the square of the trakingerror. In order to justify our laim at the beginning of this setion that theadaptive ontroller minimizes the average of the square of the traking errorwe need to show that no other non-antiipative ontroller, inluding possiblyontrollers whih utilize knowledge of the parameters (ai; bi; i), an realizea smaller value than �2 for the average squared traking error on any set ofsample paths of positive measure. This is provided in the following Lemma.Lemma 4. Consider the ARMAX system (1). Let Ft := �(ws for s �t and yi; ui for i � 0) be the �-algebra generated by the past, and let futgbe any ontrol sequene hosen so that ut 2 Ft, i.e., ut is Ft-measurable foreah t � 0. Then,lim infN 1N NXt=1(y(t)� y�(t))2 � �2 a.s.Proof: De�neg(t� 1) := " pXi=1 aiy(t� i) + qXi=1 biu(t� i) + sXi=1 iw(t� i)# ;and note that g(t � 1) 2 Ft�1. Rewrite the system equation (1) as y(t) =g(t� 1) + w(t) and gety2(t) = 1N NXt=1 g2(t� 1) "1 + PNt=1 2g(t� 1)w(t)PNt=1 g2(t� 1) #+ 1N NXt=1w2(t):Appealing to the Loal Convergene Theorem for Martingales [12, Lemma 2.3℄,we know that exept on a null set,PNt=1 2g(t� 1)w(t) = o �PNt=1 g2(t� 1)� if PNt=1 g2(t) =1;< 1 if PNt=1 g2(t) <1:In either ase, therefore, it follows thatlim infN 1N NXt=1 g2(t� 1) "1 + PNt=1 2g(t � 1)w(t)PNt=1 g2(t� 1) # � 0 a.s.17



Hene, lim infN 1N NXt=1 y2(t) � limN 1N NXt=1w2(t)= �2 a.s.The last equality has been proved in the ourse of the proof of Theorem 3.6 Self-Tuning and ConvergeneIn this setion we address the self-tuning and onvergene properties of theadaptive ontrollers.First due to (2,7) we have the same geometrial properties as in [6℄. Thisgives us the following Lemma, see [6℄.Lemma 5. limt k�(t)k exists and is �nite a.s. (22a)For every n, limt k�(t)� �(t� n)k = 0 a.s. (22b)k�(t+ 1)k � k�(t)k (22)If there is a random salar � and a random subsequene ftkg suh thatlimk �(tk) = ��Æ a.s. (22d)then limt �(t) = ��Æ a.s.So in order to prove that limt �(t) = ��Æ it is suÆient to show thatthere is just one subsequene for almost every sample path along whih suha limit exists.Theorem 6.(i) Suppose that fy�(t)g in the general traking problem is strongly suÆ-iently rih of order (s+ q). Thenlimt �(t) = ��Æ a.s. (23)for some a.s. �nite nonzero salar random variable �.(ii) The result (23) holds in the linear model following problem irrespetiveof the order of strong suÆient rihness of fy�(t)g (using the appro-priate de�nition of �Æ as in (8) or (17)).18



Proof: We start with (20b) whih an be written aslimN 1N NXt=1f[1�A(z)℄y(t + 1) + zB(z)u(t + 1) + [C(z)� 1℄w(t + 1)� fy�(t+ 1)g2 = 0:(24)De�ne the time varying polynomialsP (t; z) := p_sXi=1 �i(t)zi�1;Q(t; z) := qXi=1 �i(t)zi�1;R(t; z) := ( Pl�1i=0 i(t)zi in the linear model following problem with l � s;Psi=0 i(t)zi otherwise.We shall interpret z as the bakward shift operator. Thus, to illustrate thenotation,Q(t; z)x(t) := qXi=1 �i(t)x(t� i+ 1) : Q(t; z)B(z)x(t) := qXi=1 �i(t) qXj=1 bjx(t� i� j + 2)B(z)Q(t; z)x(t) := qXj=1 bj qXi=1 �i(t� j + 1)x(t � i� j + 2):ThoughQ(t; z)B(z)x(t) 6= B(z)Q(t; z)x(t), it should be noted that if f1=NPNt=1 x2(t)gis bounded, then it is true thatlimN 1N NXt=1[Q(t; z)B(z)x(t) �B(z)Q(t; z)x(t)℄2 = 0:To verify this, one needs to use the fats that limt k�(t)� �(t� n)k = 0 a.s.and f�(t)g is bounded a.s.Multiplying inside the summation in (24) by Q(t; z), we havelimN 1N NXt=1fQ(t; z)[1 �A(z)℄y(t+ 1) +Q(t; z)zB(z)u(t + 1)+Q(t; z)[C(z)� 1℄w(t + 1)�Q(t; z)y�(t+ 1)g2 = 0 a.s.Sine( 1N NXt=1 y2(t)) ;( 1N NXt=1 u2(t)) ;( 1N NXt=1w2(t)) ;( 1N NXt=1 y �2 (t))19



are all bounded, we an interhange the polynomials above to getlimN 1N NXt=1fz�1[1�A(z)℄Q(t; z)y(t) +B(z)Q(t; z)u(t) (25)+z�1[C(z)� 1℄Q(t; z)w(t) �Q(t; z)fy�(t+ 1)g2 = 0 a.s.Now note that the ontrol laws (5) and (14) an be written asQ(t; z)u(t) = �P (t; z)y(t) +R(t; z)y�(t+ 1): (26)Substituting (26) in (25) giveslimN 1N NXt=1ffz�1[1�A(z)℄Q(t; z) �B(z)P (t; z)gy(t)+z�1[C(z)� 1℄Q(t; z)w(t)+B(z)R(t; z)�Q(t; z)gy�(t+ 1)g2 = 0a.s.Now y(t) = w(t) + y�(t) + E[y(t)� y�(t)jFt�1℄, and so substituting for y(t)gives limN 1N NXt=1ffz�1[C(z)�A(z)℄Q(t; z) �B(z)P (t; z)gw(t)+fB(z)R(t; z)� zB(z)P (t; z) �A(z)Q(t; z)gy�(t+ 1)+fz�1[1�A(z)℄Q(t; z) �B(z)P (t; z)E[y(t)g � y�(t)jFt℄g2 = 0a.s.Due to (20b) and the fat that f�(t)g is bounded, we an drop the last termabove and writelimN 1N NXt=1ffz�1[C(z)�A(z)℄Q(t; z) �B(z)P (t; z)gw(t)+fB(z)R(t; z) � zB(z)P (t; z) �A(z)Q(t; z)gy�(t+ 1)g2 = 0a.s.Sine limt k�(t) � �(t � 1)k = 0 a.s., and sine fy�(t + 1)g is bounded, wean replae R(t; z), P (t; z) and Q(t; z) above by R(t� n; z), P (t� n; z) andQ(t� n; z), respetively, for any n. ThuslimN 1N NXt=1ffz�1[C(z)�A(z)℄Q(t � n; z)�B(z)P (t� n; z)gw(t)+fB(z)R(t� n; z)� zB(z)P (t� n; z)�A(z)Q(t � n; z)gy�(t+ 1)g2 = 0a.s20



Choose n larger than (p+ q+ s), and then we an apply Lemma 11 of [6℄ todedue thatlimN 1N NXt=1fz�1[C(z)�A(z)℄Q(t � n; z)�B(z)P (t� n; z)g2 = 0 a.s.(27)by whih we mean that the average of the square of eah oeÆient of thepolynomial in z is 0; and alsolimN 1N NXt=1ffB(z)R(t � n; z)� zB(z)P (t� n; z)�A(z)Q(t� n; z)gy�(t+ 1)g2 = 0a.s. (28)Furthermore sine fy�(t)g is bounded, (27) also implies thatlimN 1N ff[C(z)�A(z)℄Q(t � n; z)� zB(z)P (t� n; z)gy�(t+ 1)g2 = 0a.s.(29)Subtrating (28) appropriately from (29), we getlimN 1N NXt=1f[C(z)Q(t � n; z)�B(z)R(t� n; z)℄y�(t+ 1)g2 = 0 a.s.(30)Changing t� n bak to t in (27) and (30), we arrive atlimN 1N NXt=1fz�1[C(z)�A(z)℄Q(t; z) �B(z)P (t; z)g2 = 0 a.s. (31)limN 1N NXt=1f[C(z)Q(t; z) �B(z)R(t; z)℄y�(t+ 1)g2 = 0 a.s. (32)Now let us treat the ases separately.Case 1: Strong suÆient rihness of order greater than or equal to (q +s). This ase inludes the general traking problem as well as the linearmodel following problem with the order of suÆient rihness as shown. Sinefy�(t)g is strongly suÆiently rih of order greater than or equal to (q+ s),there exist n and � > 0 suh that for all large t,1nPt+nk=t+1(y�(k + 1); : : : ; y�(k � q � s+ 2))(y�(k + 1); : : : ;y�(k � q � s+ 2))T � �Is+q: (33)21



De�nes0(t) + s1(t)z + � � �+ sq+s�1(t)zq+s�1 := S(t; z) := C(z)Q(t; z) �B(z)R(t; z):Then (32) an also be written aslimm 1m mXj=18<: 1n jn+nXk=jn+1[S(k; z)y�(k + 1)℄29=; = 0 a.s.Sine limt k�(t)� �(t� 1)k = 0, we an replae S(k; z) by S(jn; z) to getlimm 1m mXj=18<: 1n jn+nXk=jn+1[S(jn; z)y�(k + 1)℄29=; = 0 a.s. (34)De�ne kS(t; z)k2 :=Pq+s�1i=0 s2i (t) and (33) implies that1n jn+nXk=jn+1[S(jn; z)y�(k + 1)℄2 � �kS(jn; z)k2 for all largej:From (34) it follows thatlimm 1m mXj=1 kS(jn; z)k2 = 0 a.s. (35)Again, sine limt k�(t)� �(t� 1)k = 0 a.s., (35) implies thatlimN 1N NXt=1 kS(t; z)k2 = 0 a.s. (36)Adding (31) and (36) giveslimN 1N NXt=1fz�1[C(z)�A(z)℄Q(t; z) �B(z)P (t; z)g2+fC(z)Q(t; z) �B(z)R(t; z)g2 = 0 a.s.Hene there is a ommon subsequene ftkg suh thatlimk fz�1[C(z)�A(z)℄Q(tk; z)�B(z)P (tk; z)g = 0 a.s. (37)22



and limk fC(z)Q(tk; z)�B(z)R(tk; z)g = 0 a.s. (38)Sine f�(t)g is bounded, we an also assume without loss of generality thatlimk Q(tk; z) =: Q(z); limk P (tk; z) =: P (z); limk R(tk; z) =: R(z) a.s. (39)exist. Hene (37) and (38) implyz�1[C(z)�A(z)℄Q(z) �B(z)P (z) = 0 a.s. (40)C(z)Q(z) �B(z)R(z) = 0 a.s. (41)However, Q(z) and P (z) are polynomials of degrees less than or equal to(q � 1) and (p _ s� 1), respetively. Hene (40) and our assumption (19d)imply that Q(z) = �B(z) and P (z) = �z�1[C(z)�A(z)℄ (42)for some random salar �. Then (41) also shows the R(z) = �C(z). Moreover� annot be 0, sine otherwise limk �(tk) = 0, whih is ruled out by (22)and (19g). From (22d) we obtain the desired result.Case 2: Linear model following problem with l(q+s). Sine limt(ym(t)�y�(t)) = 0, we an replae y � (t+ 1) by ym(t+ 1) in (32). If s+ 1 � lq+ s,we shall heneforth de�ne G(z) := C(z), while if l � s, G(z) is de�ned aspreviously by (15) and (16). In the latter ase also, from (9) and (17) wehave C(z)ym(t+ 1) = G(z)ym(t+ 1). Hene in any ase,limN 1N NXt=1[G(z)Q(t; z) �B(z)R(t; z)℄fym(t+ 1)g2 = 0 a.s. (43)Applying Lemma 2 to (43) and (31) we obtain that there is a subsequeneftkg suh that (37) holds and alsolimk [G(z)Q(tk; z) �B(z)R(tk; z)℄ = K(z)H(z) a.s.Without loss of generality we an also suppose that the limits in (39) exist.Hene G(z)Q(z)�B(z)R(z) = K(z)H(z) a.s. (44)23



Also through (31), (40) gives (42). Substituting (42) in (44) yieldsB(z)[�G(z)�R(z)℄ = K(z)H(z) a.s.Now note that by (11b) all the roots of H(z) are exatly on the unit irle,while all the roots of B(z) are stritly outside the unit irle by (19a). Hene�G(z)�R(z) = J(z)H(z) a.s.for some polynomial J(z). However [�G(z)�R(z)℄ is a polynomial of degreeless than or equal to l � 1, while H(z) is a polynomial of degree exatly l.Hene �G(z)�R(z) = 0 a.s. (45)(42) and (45) now yield the theorem.It is of interest to note that Caines and Lafortune [8℄ have suggestedan adaptive ontroller whih traks y�(t) perturbed by white noise. Suh aperturbed referene trajetory is strongly suÆiently rih of arbitrary largeorder (e�etively 1).Having proved onvergene of the parameters to ��Æ under the onditionsof Theorem 6, we now have the following results.Theorem 7.(i) In the general traking problem suppose fy�(t)g is strongly suÆientlyrih of order greater than or equal to (q + s). Thenlimt 10(t) (�1(t)� 1(t); : : : ; �p(t)� p(t); �1(t); : : : ; �q(t); 1(t); : : : ; s(t))(46)= (a1; : : : ; ap; b1; : : : ; bq; 1; : : : ; s) a.s.(with i(t) := 0 for i > s):Thus the parameter estimates are strongly onsistent. Alsolimt 1�1(t) (�1(t); : : : ; �p_s(t); �2(t); : : : ; �q(t); 0(t); : : : ; s(t)) (47)= 1b1 (a1 + 1; : : : ; ap_s + p_s; b2; : : : ; bq; 1; 1; : : : ; s) a.s.setting ai := 0 for i > p and i := 0 for i > s. Hene the adaptiveontrol law (5) self-tunes to the optimal ontrol law a.s.24



(ii) In the linear model following problem with l > s the results (46) and(47) ontinue to hold.(iii) In the linear model following problem with l � s we have,limt 1�1(t)(�1(t); : : : ; �p_s(t); �2(t); : : : ; �q(t); 0(t); : : : ; l�1(t))= 1b1 (a1 + 1; : : : ; ap_s + p_s; b2; : : : ; bq; g0; : : : ; gl�1)setting ai := 0 for i > p and i := 0 for i > s. Here fg0; : : : ; gl�1g arede�ned by (15), (16). Hene the adaptive ontrol law self-tunes to theoptimal ontrol law a.s.7 Conluding RemarksWe have proved the onvergene of the parameter estimates and the self-tuning property for the adaptive traking problem, justifying the name ofself-tuning trakers.For the general traking problem, the onvergene depends on whetherthe referene trajetory is suÆiently rih of appropriate order, as shown inTheorem 7. In the important ase of referene trajetories whih are not sorih, we have examined the linear modeling problem, and shown how one anadjust the dimension of the parameter estimator to the order of suÆientrihness so as to obtain a self-tuning traker. It is worth noting that theadaptive ontroller need not be provided with preise information suh asamplitude, frequeny or phases of the sinusoids in the referene trajetory.It is enough to know only the number of suh omponents.An important appliation, whih is a speial ase of these results, is theproblem of maintaining the output at a onstant level, i.e., the set-pointproblem. The onstant trajetory is suÆiently rih of only order 1, andonly one parameter need be estimated to ompensate for the olored noiseand rejet it optimally.Among the outstanding problems still left unresolved are the following:(i) Does the least squares based parameter estimation algorithm also pos-sess the above properties? This is of vital interest beause the rateof onvergene of least squares based algorithms has been observed tobe superior to the type of parameter estimation algorithm onsideredhere. 25
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