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1 INTRODUCTIONThe problem of sto
hasti
 adaptive 
ontrol of linear ARMAX systems hasre
eived 
onsiderable attention over the past de
ade. The notable pioneering
ontributions are due to �Astr�omand Wittenmark [1℄ and Ljung [2,3℄. Subse-quently, Goodwin, Ramadge and Caines [4℄ and Goodwin and 
o-workers [5℄have proved the self-optimality of some adaptive 
ontrol algorithms for min-imum varian
e regulation and tra
king. By self-optimality it is meant thatthe 
ost, the time average of the square of the tra
king error, is minimal.Re
ently a sto
hasti
 gradient algorithm has been proved to be self-tuning for the regulation problem, see [6℄. (Re
all that in the regulationproblem one wants the output of the system to stay as 
lose as possibleto zero, whereas in the tra
king problem one wants to tra
k a given arbi-trary traje
tory). By \self-tuning" it is meant that the adaptive 
ontrol law
onverges to the optimal 
ontrol law. This is 
learly a property of funda-mental interest sin
e it implies that the adaptive 
ontroller 
an be used asa me
hanism for tuning to the parameters of an optimal 
ontrol law.In this paper we examine the problem of minimum varian
e tra
kingwhere the goal is to ensure that the output of the system tra
ks a spe
i�edreferen
e traje
tory with minimal average squared tra
king error.From a purely te
hni
al viewpoint the analysis of the tra
king problemalong the lines of [6℄ has until now been stymied by the fa
t that a keygeometri
 property of the adaptive 
ontrol algorithm, whi
h renders theregression and parameter estimate ve
tors orthogonal, holds only in theregulation problem and not in the 
ase of tra
king. Our �rst 
ontributionhere is to show how to over
ome this diÆ
ulty by enlarging the dimensionof the regression ve
tor.Another well known diÆ
ulty with the tra
king problem is that whenthe referen
e traje
tory to be tra
ked is a general non-zero traje
tory (we
all this the general tra
king problem), then the 
ontrol law whi
h allowsthe traje
tory to be tra
ked with minimum varian
e does require expli
itknowledge of the 
oeÆ
ients of the 
olored noise polynomial, see [4℄, [6℄,[12℄. This is another feature distinguishing the tra
king problem from theregulation problem. Consequently, it is ne
essary to identify some additionalparameters pertaining to the 
olored noise polynomial in order to obtain self-tuning. Su
h identi�
ation is established in this paper under the naturalassumption that the referen
e traje
tory is suÆ
iently ri
h of appropriateorder.The se
ond essential 
ontribution of this paper is the examination of how2



one may obtain self-tuning when the referen
e traje
tory is not so ri
h as toallow one to identify all the 
oeÆ
ients of the 
olored noise polynomial. Forexample, in an important 
lass of pra
ti
al problems, 
alled set-point prob-lems, the output of the system is required to stay as 
lose as possible to a
ertain spe
i�ed level. Thus the referen
e traje
tory is a non-zero 
onstant,whi
h is suÆ
iently ri
h of order one only. We examine su
h problems, whi
hviolate the ri
hness assumptions of the general tra
king problem, by exam-ining the problem of following traje
tories whi
h are generated by linearmodels. We 
all these the linear model following problems. (The set-pointproblem is a spe
ial 
ase of the linear model following problem). Our se
ond
lass of main results is to show how one may adjust the dimension of the re-gression ve
tor to the degree of ex
itation present in the referen
e traje
tory.We then provide a proof of self-tuning of the resulting redu
ed dimensionadaptive 
ontrollers.Our main results are therefore the following:(i) The adaptive 
ontrol laws in both the general tra
king problem as wellas the linear model following problem are self-optimal, i.e., the averagesquared tra
king error is minimal (Theorem 3).(ii) In the general tra
king problem, if the referen
e traje
tory is suÆ-
iently ri
h of order at least equal to the sum of the degrees of the
ontrol and noise polynomials in the ARMAX representation of thesystem, then the parameter estimates are strongly 
onsistent, i.e., they
onverge to the true values almost surely (Theorems 6,7). This resultalso implies that the adaptive 
ontroller is self-tuning, i.e., the adaptive
ontrol law 
onverges to the optimal 
ontrol almost surely (Theorem7).(iii) For the parameter estimates to be strongly 
onsistent in the linearmodel following problem it is enough for the order of suÆ
ient ri
h-ness of the referen
e traje
tory to be equal to the degree of the noisepolynomial alone (Theorems 6 and 7). This again implies self-tuning(Theorem 7).(iv) Often, the degree of suÆ
ient ri
hness is even smaller than the degreeof the noise polynomial (e.g., the set-point problem). In su
h linearmodel following problems, a lower dimensional adaptive 
ontroller 
anbe used. This lower dimensional adaptiver 
ontroller is self-tuning(Theorem 7). The parameter estimates also 
onverge (Theorem 6).3



However, sin
e no attempt is made at estimating all the 
oeÆ
ients ofthe noise polynomial, the parameter estimates do not 
onverge to thetrue values (i.e., we are using a dire
t adaptive 
ontrol law).Some 
omments on the nature of these results in 
omparison with theresults in deterministi
 adaptive 
ontrol are useful. In deterministi
 adaptive
ontrol, where there is no noise in the system, one 
an asymptoti
ally obtainzero tra
king error. However in sto
hasti
 adaptive 
ontrol there is noiseand one wants to reje
t as mu
h of the noise as possible. Clearly optimalnoise reje
tion will depend 
riti
ally on the knowledge of the 
orrelationsinherent in the possibly 
olored noise. This is where the 
entral problem ofestimating the 
olored noise 
oeÆ
ients enters into the sto
hasti
 adaptive
ontrol problem. Indeed, in the present paper, the need for ri
hness in thereferen
e traje
tory is intimately related pre
isely to the need for estimatingthe model of the 
olored noise.2 The Adaptive Control LawsWe 
onsider the ARMAX systemy(t) = pXi=1 aiy(t� i) + qXi=1 biu(t� i) + sXi=1 
iw(t� i) + w(t) (1)where y, u and w are, respe
tively, the output, input and white noise. Theparameters (a1; : : : ; ap; b1; : : : ; bq; 
1; : : : ; 
s) are unknown. The goal is to de-sign an adaptive 
ontrol law whi
h ensures that the output follows a givenbounded referen
e traje
tory fy�(t)g with minimal average squared tra
k-ing error, and su
h that the adaptive 
ontrol law asymptoti
ally self-tunesto the optimal 
ontrol law. It is an added bonus if the true parameters(a1; : : : ; ap; b1; : : : ; bq; 
1; : : : ; 
s) 
an also be asymptoti
ally identi�ed.If the referen
e traje
tory is arbitrary, we shall refer to this problemas the general tra
king problem. In many problems however the referen
etraje
tory is generated as the output of a linear model. We shall refer to su
ha spe
ial 
ase as the linear model following problem. The spe
ial propertiesof a referen
e traje
tory generated as the output of a linear model 
an beusefully exploited, as we will see in the sequel. We now dis
uss separatelythe general tra
king problem and the linear model following problem.
4



2.1 The General Tra
king ProblemIn this 
ase fy�(t)g is just a referen
e traje
tory to be tra
ked with no spe
ialproperties. We will use the following adaptive 
ontroller (with the notationp _ s := max(p; s)).�(t+ 1) = �(t) + ��(t)r(t) [y(t+ 1)� y�(t+ 1)℄ (2)where, for the time being, 0 < � < 2 is an arbitrary 
onstant (but see theremark at the end of Se
tion 4),r(t+ 1) := 1 + t+1Xk=0�T (k)�(k); (3)�(t) := (y(t); : : : ; y(t� p _ s+ 1); u(t); : : : ; u(t� q + 1);�y�(t+ 1); : : : ;�y�(t� s+ 1)) (4)u(t) := �1�1(t) "p_sXi=1 �i(t)y(t� i+ 1) + qXi=2 �i(t)u(t� i+ 1)� sXi=0 
i(t)y�(t� i+ 1)#(5)where (�1(t); : : : ; �p_s(t); �1(t); : : : ; �q(t); 
0(t); : : : ; 
s(t))T := �(t): (6)Note that (5) 
an equivalently be written as�T (t)�(t) = 0: (7)The motivation behind this adaptive 
ontroller is the following. Rewritethe system (1) as,y(t+ 1)� y�(t+ 1) = " pXi=1 aiy(t+ 1� i) + qXi=1 biu(t+ 1� i) + sXi=1 
iw(t+ 1� i)� y�(t+ 1)#+w(t+ 1):If one 
ould observe the past of w(�) at ea
h time t, then an optimal 
ontrollerwould 
hoose u(t) so that the term in [��℄ on the right-hand side above iszero, i.e.,u(t) = �1b1 " pXi=1 aiy(t+ 1� i) + qXi=2 biu(t+ 1� i) + sXi=1 
iw(t+ 1� i)� y�(t+ 1)# ;5



for this would result in y(t+ 1) = y�(t+ 1) + w(t + 1), 
learly yielding thebest possible tra
king error. However, the sequen
e w(�) is not observed,and so let us repla
e it by y(�) � y�(�), whi
h is what we hope it would be,at least asymptoti
ally. This gives the implementable 
ontrol law,u(t) = �1b1 "p_sXi=1(ai + 
i)y(t+ 1� i) + qXi=2 biu(t+ 1� i)� sXi=1 
iy�(t+ 1� i)� y�(t+ 1)# :It 
an be shown that this 
ontrol law is a
tually optimal with respe
t to thelong run average of the square of the tra
king error; for more details, see[12℄. Let us de�ne,�Æ := (a1 + 
1; : : : ; ap_s + 
p_s; b1; : : : ; 1; 
1; : : : ; 
s)T (8)(where, for 
onvenien
e, we de�ne 
i := 0 for i > s and ai := 0 for i > p in(8)), and, under optimal 
ontrol, the system (1) 
an be represented asy(t+ 1)� y�(t+ 1) = �T (t)�Æ + w(t+ 1);while the optimal 
ontrol law 
an be written as one whi
h 
hooses u(t) tosatisfy, �T (t)�Æ = 0:Our adaptive 
ontrol s
heme (2)-(6) 
an be interpreted as trying to estimate�Æ when the system is being optimally 
ontrolled.Remark: Note that the (p _ s+ q + 1)th 
omponent of �Æ is 1, andhen
e is a known quantity. However, the estimator ignores this knowledgeand estimates it anyway by 
0(t). We 
an therefore regard (2), (3) as anunnormalized parameter estimator. It follows that this parameter estimatoris one dimension larger than that 
onsidered in Goodwin, Ramadge andCaines [4℄. In this 
onne
tion, it is also of interest to note that re
entlyWei [7℄ has proposed an estimator for the regulation problem whi
h is onedimension less than [4℄, [6℄.2.2 The Linear Model Following ProblemIn many situations of interest the referen
e traje
tory is generated, at leastasymptoti
ally, as the output of a linear model. We shall suppose that thereis a sequen
e fym(t)g su
h thatym(t) = lXi=1 hiym(t� i) (9)6



and the traje
tory to be tra
ked y�(t) is asymptoti
ally 
lose to ym(t) inthat 1Xt=1(y�(t)� ym(t))2 < +1: (10)Without loss of generality we 
an make the following two assumptions:There is no lower order di�eren
e equation satis�ed by fym(t)g, i.e., thereis no nontrivial polynomial H(z) of degree stri
tly less than l su
h thatH(z)ym(t) = 0 for all t. (z is the ba
kward shift operator). (11a)The roots of H(z) := 1�Pli=1 hizi are exa
tly on the unit 
ir
le and thereare no repeated roots. (11b)Assumption (11a) is without loss of generality sin
e otherwise we 
ouldsimply repla
eH(z) in (9) byH(z). Note that this also means that the initial
onditions on (9) are suÆ
ient to ex
ite all the modes of H(z). Assumption(11b) is also without loss of generality due to the following reasons. First,sin
e we intend to work only with bounded fy�(t)g, and sin
e all the modesof H(z) are ex
ited, we have to assume that H(z) has roots on or outsidethe unit 
ir
le, and also that the roots on the unit 
ir
le are not repeated.However, sin
e we are only interested in the asymptoti
 behavior of fy�(t)g,we 
an eliminate all the modes 
orresponding to roots of H(z) whi
h arestri
tly outside the unit 
ir
le, sin
e they de
ay geometri
ally to 0. Thisleaves us with (11b).It is worth noting that (11a) and (11b) together imply thatym(t) = d0 + d1(�1)t +X di sin(!it+ Æi):Depending on how large l is, we will use adaptive 
ontrollers with pa-rameter estimators of di�erent dimensions.Case 1: l � s. Re
all that s is the degree of the noise polynomial in (1).When l � s, we will redu
e the dimension of the parameter estimator by(s+ 1� l) 
omponents by repla
ing (4-6) by the following:�(t) := (y(t); : : : ; y(t� p _ s+ 1); u(t); : : : ; u(t� q + 1);�y�(t+ 1); : : : ;�y�(t+ 2� l))T ; (12)�(t) := (�1(t); : : : ; �p_s(t); �1(t); : : : ; �q(t); 
0(t); : : : ; 
l�1(t))T ; (13)7



andu(t) = �1�1(t) "p_sXi=1 �i(t)y(t� i+ 1) + qXi=2 �i(t)u(t� i+ 1)� l�1Xi=0 
i(t)y�(t� i+ 1)# ;(14)or equivalently by (7).The idea underlying the above adaptive 
ontrol law is the following.If the parameters were known the minimum varian
e adaptive 
ontrol lawwould be,u(t) = �1b1 "p_sXi=1(ai + 
i)y(t� i+ 1) + qXi=2 biu(t� i+ 1)� y�(t+ 1)� sXi=1 
iy�(t� i+ 1)# ;see [12℄ for details. In this 
ontrol law the only terms featuring y� arey�(t+ 1) +Psi=1 y�(t� i+ 1) = C(z)y�(t+ 1). Thus the 
ontrol law reallyonly requires knowledge of C(z)y�(t). LetG(z) := l�1Xi=0 gizi (15)be a polynomial satisfying,C(z) = F (z)H(z) +G(z) (16)for some F (z) := s�lXi=0 fizi: (17)Su
h polynomials G(z) and F (z) are the remainder and quotient, respe
-tively, when the polynomial C(z) is divided by the polynomial H(z). Then,asymptoti
ally at least,C(z)y�(t) = [F (z)H(z) +G(z)℄y�(t) = F (z)H(z)y�(t) +G(z)y�(t) = G(z)y�(t);sin
e by (9, 10), H(z)y�(t) = 0 holds asymptoti
ally. Thus we only needknowledge of G(z)y�(t) in order to implement the true minimum varian
e
ontrol law. We 
an therefore interpret the parameter estimate (13) as tryingto estimate�Æ := (a1 + 
1; : : : ; ap_s + 
p_s; b1; : : : ; bq; g0; g1; : : : ; gl�1)T : (18)8



Remarks:(i) The adaptive 
ontroller need not be provided with the pre
ise infor-mation about what the polynomial H(z) is. It only needs knowledgeof the degree of H(z).(ii) It should be noted that the parameter estimator is no more \unnor-malized," sin
e the 
oeÆ
ients g0; : : : ; gl�1 are all unknown.Case 2: l � s + 1. Sin
e (s + 1 � l) � 0 when l � s + 1, no savings indimensionality 
an be a
hieved. Hen
e we will use the same adaptive 
ontrollaw as (2-7). For this 
ase also we de�ne �Æ as in (8).3 SuÆ
ient Ri
hnessIn the sequel we will prove that all the 
oeÆ
ients (a1; : : : ; ap; b1; : : : ; bq; 
1; : : : ; 
s)
an be asymptoti
ally identi�ed when the referen
e traje
tory fy�(t)g is\suÆ
iently ri
h" in an appropriate sense. We have the following de�nition.De�nition (18). We shall say that a s
alar sequen
e fy�(t)g is stronglysuÆ
iently ri
h of order l if l is the largest non-negative integer for whi
hthere exists an n and an � > 0 su
h thatt+nXk=t+1(y�(k � 1); : : : ; y�(k � l))T (y�(k � 1); : : : ; y�(k � l)) � �Il foralltlargeenough:Il here is the l � l identity matrix.The following property of fym(t)g, and also fy�(t)g, generated by thelinear model (9), (10), (11a), 11b) should be noted.Lemma 1. Suppose fy�(t)g and fym(t)g satisfy (9)-(11b). Then bothfy�(t)g and fym(t)g are strongly suÆ
iently ri
h of order l.Proof: We will show that there exists � > 0 su
h thatt+lXk=t+1 Yl(k � 1) � �IlforalltlargeenoughwhereYl(k � 1) := (ym(k � 1); : : : ; ym(k � l))T (ym(k � 1); : : : ; ym(k � l)):9



Suppose this is not true. Then there exists a sequen
e of ve
tors fx(tn)g,with ea
h kx(tn)k = 1 and x(tn) =: (x1(tn); : : : ; xl(tn))T su
h thatxT (tn) tn+lXk=tn+1 Yl(k � 1)x(tn) � 1n:We 
an also assume without loss of generality that limn x(tn) =: x existswith kxk = 1, x := (x1; : : : ; xl)T . Moreover, sin
e fym(t)g is bounded,fYl(k � 1)g is also bounded and solimn xT tn+lXk=tn+1Yl(k � 1)x = 0:Let X(z) := Pli=1 xizi. Interpreting z as the ba
kward shift operator, wehave limn tn+lXk=tn+1[X(z)ym(k)℄2 = 0:This implies thatlimn X(z)ym(tn + i) = 0 fori = 1; 2; : : : ; l:Now note that H(z)X(z)ym(t) = X(z)H(z)ym(t) = 0 and soX(z)ym(t) = lXk=1 Æk�tkwhere f�kg is the set of roots of H(z). Hen
e we havelimn lXk=1 Æk�tn+ik = 0 fori = 1; : : : ; l:This 
an also be written aslimn 266664 1 1 1 1 1 1�1 �2 �l... ... ... ... ... ...�l�11 �l�12 �l�11 377775266664 �tn+11 0 0 0 0 00 �tn+12 0... ... ... ... ... ...0 0 �tn+11 377775266664 Æ1Æ2...Æl 377775 = 0:10



The �rst matrix on the left-hand side above is the Vandermonde matrixwhi
h is nonsingular sin
e all the �k's are distin
t. Moreover j�kj = 1 for allk, and so it follows that Æk = 0 for k = 1; : : : ; l. This however implies thatX(z)ym(t) = 0 for all t. However X(z) is a polynomial of degree l�1 or less,and by (11a), it follows that X(z) = 0, i.e., kxk = 0. This is a 
ontradi
tionto kxk = 1, proving that fym(t)g is indeed strongly suÆ
iently ri
h of orderl. By (10) it follows trivially that fy�(t)g is also strongly suÆ
iently ri
h oforder l. (A
tually it is enough that limt(ym(t)� y�(t)) = 0).For future referen
e, we also have the following result.Lemma 2. Let S(t; z) := Pji=0 si(t)zi. Suppose fsi(t)g is bounded fori = 0; : : : ; j and limt jsi(t)� si(t�1)j = 0 for i = 0; : : : ; j. Suppose also thatfor some sequen
e fx(t)g,limN 1N NXt=1[S(t; z)ym(t)℄2 = 0 and limN 1N NXt=1 x2(t) = 0:Then there exists a 
ommon subsequen
e ftkg with limk x(tk) = 0 andlimk S(tk; z) = K(z)H(z) for some polynomial K(z). (By S(t; z)ym(t) wemean Pji=0 si(t)ym(t� i).Proof: Sin
e limt jsi(t)�si(t+n)j = 0 for every n and fym(t)g is bounded,it is also true that limN 1=NPNt=1[S(t+n; z)ym(t)℄2 = 0 for every n. Hen
ewe 
an sum over n and also add x2(t) to getlimN 1N NXt=1(x2(t) + lXn=1[S(t; z)ym(t� n)℄2) = 0:Hen
e there is a subsequen
e ftkg su
h thatlimk S(tk; z)ym(tk � n) = 0 forn = 1; : : : ; l limk x(tk) = 0:Further we 
an also assume without loss of generality thatlimk S(tk; z) =: S(z)exists, by whi
h we mean that limk si(tk) =: si exists for i = 0; : : : ; j andS(z) :=Pji=0 sizi. Further, sin
e fym(t)g is bounded, it follows thatlimk S(z)ym(tk � n) = 0 forn = 1; : : : ; l:11



Note that H(z)S(z)ym(t) = 0 for all t, and soS(z)ym(t) = lXn=1 Æn�tnwhere f�ng is the set of roots of H(z). Pro
eeding just as in the proof ofLemma 1, it follows that S(z)ym(t) = 0 forallt:Now let U(z) be the greatest 
ommon divisor of S(z) and H(z). Then thereexist polynomials R(z) and T (z) su
h that R(z)S(z) + T (z)H(z) = U(z).Hen
e U(z)ym(t) = 0 for all t. However, sin
e the degree of U(z) is lessthan or equal to l, it follows from (11a) that U(z) = �H(z), for some s
alar�, and so the Lemma is proved.4 AssumptionsDe�ne the polynomials A(z) := 1� pXi=1 aiziB(z) := qXi=1 bizi�1C(z) := 1 + sXi=1 
izi:Throughout this paper we employ the following assumptions only.All the roots of B(z) and C(z) are stri
tly outside the unit 
ir
le. (19a)Re[C(ei!)� �2 ℄0for0 � !2� (19b)b1! = 0 (19
)z�1[C(z)�A(z)℄ and B(z) are polynomials of degrees respe
tively equalto (p _ s� 1) and (q � 1), whi
h have no 
ommon fa
tors. (19d)fw(t)g is a sequen
e of s
alar random variables on a probability spa
ef
; F; Pg, whose distributions are all mutually absolutely 
ontinuous12



with respe
t to Lebesgue measure. (19e)Let fFt := �w(1); : : : ; w(t)g be the sub-�-algebra of F generated byfw(1); : : : ; w(t)g. We assume that there are �20 and Æ0 su
h that (19f)E[w(t)jFt�1 ℄ = 0a:s:E[w2(t)jFt�1℄ = �2a:s:supt E[jw(t)j2+Æ jFt�1℄ +1a:s:jj�(0)jj0 (19g)fy�(t)g is bounded. (19h)It should be noted that the 
ondition (19e) guarantees that the 
ontrols arewell de�ned a.s. through (5.14) sin
e the event f�1(t) = 0g is a null event,see Caines and Meyn [9℄.Remark: Let us 
onsider a di�erent 
onstant �1 in pla
e of � in (2). It iseasy to verify, see [12℄, that the resulting adaptive 
ontrol algorithm produ
esparameter estimates �1(t) = �1=��(t) and identi
al inputs and outputs asthe original algorithm using �, provided �1(0) is 
hosen as �1(0) := �1=��(0).This property relies on the fa
t that the 
ontrol input u(t) is invariant withrespe
t to s
aling of �(t) in (7). Making use of this observation it followsthat one need not restri
t � to lie in (0; 2); it is enough to have � 6= 0.Further, one only needs the assumptionReC(ei!)0for0 � !2� (19i)in pla
e of (19b).5 Self-OptimalityIn this se
tion we will prove the following Theorem whi
h asserts, amongother things, that in all 
ases the adaptive 
ontroller minimizes the averagesquared tra
king error.Theorem 3. limN 1N NXt=1[y(t)� y � (t)℄2 = �2a:s: (20a)limN 1N NXt=1(E[y(t+ 1)� y � (t+ 1)jFt℄)2 = 0a:s: (20b)13



limN 1N NXt=1 u2(t) +1a:s: (20
)limt jj�(t)� �Æjj2existsandis�nitea:s: (20d)Proof: We will abbreviate those details of the proof whi
h are similar tothose of Goodwin, Ramadge and Caines [4℄ or [6℄. Let e�(t) := �(t)� �Æ andde�ne V (t) := ke�(t)k2. Using r(t) � �T (t)�(t) and �T (t)e�(t) = ��T (t)�Æ,we 
an getE[V (t+ 1)jFt℄ � V (t)� 2�r(t) ��T (t)�Æ � �+ Æ2 E[y(t+ 1)� y�(t+ 1)jFt℄��E[y(t+ 1)� y � (t+ 1)jFt℄��Ær(t) (E[y(t+ 1)� y�(t+ 1)jF t℄)2+�2�T (t)�(t)r2(t) �2for all Æ. Choose Æ > 0 so small that [C(z) � (� + Æ=2)℄ is stri
tly positivereal. Let us �rst 
onsider the following 
ase.Case 1: General tra
king problem or the linear model following problemwith l � s+ 1.C(z)E[y(t+ 1)� y�(t+ 1)jFt℄ = C(z)[y(t+ 1) � y�(t+ 1)� w(t+ 1)℄= [y(t+ 1)� y�(t+ 1)�w(t+ 1)℄+[C(z)� 1℄[y(t+ 1)� y�(t+ 1)� w(t+ 1)℄= [y(t+ 1)� y�(t+ 1)�w(t+ 1)℄+Psi=1 
i[y(t� i+ 1)� y�(t� i+ 1)� w(t� i+ 1)℄= [y(t+ 1)� w(t+ 1)�Psi=1 
iw(t� i+ 1)℄� y�(t+ 1)+Psi=1 
i[y(t� i+ 1)� y�(t� i+ 1)℄= Pp_si=1(ai + 
i)y(t� i+ 1) +Pqi=1 biu(t� i+ 1)�y�(t+ 1)�Psi=1 
iy�(t� i+ 1)= �T (t)�Æ:
(21)

By the stri
t positive realness of [C(z)� (�+ Æ)=2℄ it therefore follows thatS(n) := 2� nXt=1��T (t)�Æ � �+ Æ2 E[y(t+ 1)� y�(t+ 1)jFt℄�E[y(t+ 1)� y�(t+ 1)jFt℄� Ka.s. for all n, for some K:14



De�ning M(t) := V (t) + S(t� 1)=r(t� 1), and using r(t) � r(t� 1) > 0, itfollows thatE[M(t+ 1)jFt℄ � M(t)� �Ær(t)(E[y(t+ 1)� y�(t+ 1)jFt℄)2 + �2�T (t)�(t)r2(t) �2:The last term above is summable a.s., and so using the Positive Near Su-permartingale Convergen
e Theorem we 
an get:(i) fM(t)g 
onverges a.s.,(ii) P1t=1 (E[y(t+1)�y�(t+1)jFt℄)2r(t) < +1a:s:Now we 
laim that limt r(t) = +1 a.s. Otherwise rt = 1 +Pti=1 �T (k)�(k)would lead to limt �(t) = 0 on a set of positive probability. This in turnwould imply limt yt = 0 and limt ut = 0, and from the system equation (1)it would then have to follow that limt C(z)w(t) = 0 on a set of posi-tive probability, whi
h we will now 
ontradi
t as follows. First note that(C(z)w(t))2 = a linear 
ombination of terms of the form w2(t � i) andw(t� i)w(t� j). Let us �rst examine the �rst set of square terms. As a 
on-sequen
e of (19f) and Jensen's and Minkowski's inequalities, it follows thatsuptE[jw2(t)�E(w2(t)jFt�1)j1+Æ=2jFt�1℄1 a.s. Chow's Theorem [10, The-orem 3.3.1℄ is therefore appli
able, and shows that limN 1=NPNt=1 w2(t) =�2 a.s. Now we turn to the 
ross terms. Sin
e P1t=1 w2(t � i) = 1a.s., an appeal to the Lo
al Convergen
e Theorem for Martingales [11,Lemma 2.3℄ shows that PNt=1 2w(t � i)w(t) = o(PNt=1 w2(t� i)) a.s. Hen
elimN 1=NPNt=1 w(t � i)w(t) = 0 a.s. Adding up the 
ontributions we getlimN 1=NPNt=1(C(z)w(t))2 = 1+Psi=1 
2i > 0 a.s. This provides the required
ontradi
tion.Sin
e limt r(t) = +1 a. s., Krone
ker's Lemma is appli
able and giveslimN 1r(N) NXt=1(E[y(t+ 1)� y�(t+ 1jFt℄)2 = 0a:s:Utilizing the stri
tly minimum phase property of B(z) it follows that fr(N)=Ngis bounded a.s., whi
h proves (20
) and (20b). The same arguments as inLemma 7 and Lemma 9 of [6℄ yield (20a) and (20d).Case 2: Linear model following problem with l � s. Just as in (21) westill getC(z)E[y(t + 1)� y�(t+ 1)jFt℄ = p_sXi=1(ai + 
i)y(t� i+ 1) + qXi=1 biu(t� i+ 1)�C(z)y�(t+ 1):15



Let ~y(t) := ym(t)� y�(t). Then from (9) and (16) we getC(z)y�(t+ 1) = C(z)ym(t+ 1)�C(z)~y(t+ 1)= G(z)ym(t+ 1)�C(z)~y(t+ 1)= G(z)y�(t+ 1) + [G(z)�C(z)℄~y(t+ 1):Hen
eC(z)E[y(t + 1)� y�(t+ 1)jFt℄ = p_sXi=1(ai + 
i)y(t� i+ 1) + qXi=1 biu(t� i+ 1)�G(z)y�(t+ 1) + [C(z)�G(z)℄~y(t+ 1)= �T (t)�Æ + [C(z)�G(z)℄~y(t+ 1):By the stri
t positive realness property of [C(z)� �+ Æ=2℄, it follows thatS(n) := 2� nXt=1 n�T (t)�Æ + [C(z)�G(z)℄~y(t+ 1)��+ Æ2 E[y(t+ 1)� y�(t+ 1)jFt℄��E[y(t+ 1)� y�(t+ 1)jFt℄� K a.s. for all n, for someK:De�ning M(t) := V (t) + S(t� 1)=r(t� 1), we getE[M(t+ 1)jFt℄ � M(t)� �Ær(t)(E[y(t+ 1)� y�(t+ 1)j Ft℄)2 + �2�T (t)�(t)r2(t) �2+ 2�r(t)E[y(t+ 1)� y�(t+ 1)jFt℄[C(z)�G(z)℄~y(t+ 1):De�ne y(t) := [C(z)�G(z)℄~y(t+1), and note that by (10),P1t=1 y2(t) < +1.For any � > 0, we have2E[y(t + 1) � y�(t+ 1)jFt℄y(t) � �2(E[y(t+ 1)� y�(t+ 1)jFt℄)2 + �y(t)� �2 :Hen
e, 
hoose � so small that (�Æ � 2��2) > 0, and note thatE[M(t+ 1)jFt℄ � M(t)� (�Æ � 2��2)r(t) (E[y(t+ 1)� y�(t+ 1)jFt℄)2+�2�T (t)�(t)r2(t) �2 + 2�y2(t)�2r(t) :16



Now both of the last two terms are summable, and so we 
an again use thePositive Near Supermartingale Convergen
e Theorem. The rest of the proofis similar to the previous 
ase.By (20a) of the above Theorem, we see that usage of the adaptive 
on-troller leads to a value of �2 for the average of the square of the tra
kingerror. In order to justify our 
laim at the beginning of this se
tion that theadaptive 
ontroller minimizes the average of the square of the tra
king errorwe need to show that no other non-anti
ipative 
ontroller, in
luding possibly
ontrollers whi
h utilize knowledge of the parameters (ai; bi; 
i), 
an realizea smaller value than �2 for the average squared tra
king error on any set ofsample paths of positive measure. This is provided in the following Lemma.Lemma 4. Consider the ARMAX system (1). Let Ft := �(ws for s �t and yi; ui for i � 0) be the �-algebra generated by the past, and let futgbe any 
ontrol sequen
e 
hosen so that ut 2 Ft, i.e., ut is Ft-measurable forea
h t � 0. Then,lim infN 1N NXt=1(y(t)� y�(t))2 � �2 a.s.Proof: De�neg(t� 1) := " pXi=1 aiy(t� i) + qXi=1 biu(t� i) + sXi=1 
iw(t� i)# ;and note that g(t � 1) 2 Ft�1. Rewrite the system equation (1) as y(t) =g(t� 1) + w(t) and gety2(t) = 1N NXt=1 g2(t� 1) "1 + PNt=1 2g(t� 1)w(t)PNt=1 g2(t� 1) #+ 1N NXt=1w2(t):Appealing to the Lo
al Convergen
e Theorem for Martingales [12, Lemma 2.3℄,we know that ex
ept on a null set,PNt=1 2g(t� 1)w(t) = o �PNt=1 g2(t� 1)� if PNt=1 g2(t) =1;< 1 if PNt=1 g2(t) <1:In either 
ase, therefore, it follows thatlim infN 1N NXt=1 g2(t� 1) "1 + PNt=1 2g(t � 1)w(t)PNt=1 g2(t� 1) # � 0 a.s.17



Hen
e, lim infN 1N NXt=1 y2(t) � limN 1N NXt=1w2(t)= �2 a.s.The last equality has been proved in the 
ourse of the proof of Theorem 3.6 Self-Tuning and Convergen
eIn this se
tion we address the self-tuning and 
onvergen
e properties of theadaptive 
ontrollers.First due to (2,7) we have the same geometri
al properties as in [6℄. Thisgives us the following Lemma, see [6℄.Lemma 5. limt k�(t)k exists and is �nite a.s. (22a)For every n, limt k�(t)� �(t� n)k = 0 a.s. (22b)k�(t+ 1)k � k�(t)k (22
)If there is a random s
alar � and a random subsequen
e ftkg su
h thatlimk �(tk) = ��Æ a.s. (22d)then limt �(t) = ��Æ a.s.So in order to prove that limt �(t) = ��Æ it is suÆ
ient to show thatthere is just one subsequen
e for almost every sample path along whi
h su
ha limit exists.Theorem 6.(i) Suppose that fy�(t)g in the general tra
king problem is strongly suÆ-
iently ri
h of order (s+ q). Thenlimt �(t) = ��Æ a.s. (23)for some a.s. �nite nonzero s
alar random variable �.(ii) The result (23) holds in the linear model following problem irrespe
tiveof the order of strong suÆ
ient ri
hness of fy�(t)g (using the appro-priate de�nition of �Æ as in (8) or (17)).18



Proof: We start with (20b) whi
h 
an be written aslimN 1N NXt=1f[1�A(z)℄y(t + 1) + zB(z)u(t + 1) + [C(z)� 1℄w(t + 1)� fy�(t+ 1)g2 = 0:(24)De�ne the time varying polynomialsP (t; z) := p_sXi=1 �i(t)zi�1;Q(t; z) := qXi=1 �i(t)zi�1;R(t; z) := ( Pl�1i=0 
i(t)zi in the linear model following problem with l � s;Psi=0 
i(t)zi otherwise.We shall interpret z as the ba
kward shift operator. Thus, to illustrate thenotation,Q(t; z)x(t) := qXi=1 �i(t)x(t� i+ 1) : Q(t; z)B(z)x(t) := qXi=1 �i(t) qXj=1 bjx(t� i� j + 2)B(z)Q(t; z)x(t) := qXj=1 bj qXi=1 �i(t� j + 1)x(t � i� j + 2):ThoughQ(t; z)B(z)x(t) 6= B(z)Q(t; z)x(t), it should be noted that if f1=NPNt=1 x2(t)gis bounded, then it is true thatlimN 1N NXt=1[Q(t; z)B(z)x(t) �B(z)Q(t; z)x(t)℄2 = 0:To verify this, one needs to use the fa
ts that limt k�(t)� �(t� n)k = 0 a.s.and f�(t)g is bounded a.s.Multiplying inside the summation in (24) by Q(t; z), we havelimN 1N NXt=1fQ(t; z)[1 �A(z)℄y(t+ 1) +Q(t; z)zB(z)u(t + 1)+Q(t; z)[C(z)� 1℄w(t + 1)�Q(t; z)y�(t+ 1)g2 = 0 a.s.Sin
e( 1N NXt=1 y2(t)) ;( 1N NXt=1 u2(t)) ;( 1N NXt=1w2(t)) ;( 1N NXt=1 y �2 (t))19



are all bounded, we 
an inter
hange the polynomials above to getlimN 1N NXt=1fz�1[1�A(z)℄Q(t; z)y(t) +B(z)Q(t; z)u(t) (25)+z�1[C(z)� 1℄Q(t; z)w(t) �Q(t; z)fy�(t+ 1)g2 = 0 a.s.Now note that the 
ontrol laws (5) and (14) 
an be written asQ(t; z)u(t) = �P (t; z)y(t) +R(t; z)y�(t+ 1): (26)Substituting (26) in (25) giveslimN 1N NXt=1ffz�1[1�A(z)℄Q(t; z) �B(z)P (t; z)gy(t)+z�1[C(z)� 1℄Q(t; z)w(t)+B(z)R(t; z)�Q(t; z)gy�(t+ 1)g2 = 0a.s.Now y(t) = w(t) + y�(t) + E[y(t)� y�(t)jFt�1℄, and so substituting for y(t)gives limN 1N NXt=1ffz�1[C(z)�A(z)℄Q(t; z) �B(z)P (t; z)gw(t)+fB(z)R(t; z)� zB(z)P (t; z) �A(z)Q(t; z)gy�(t+ 1)+fz�1[1�A(z)℄Q(t; z) �B(z)P (t; z)E[y(t)g � y�(t)jFt℄g2 = 0a.s.Due to (20b) and the fa
t that f�(t)g is bounded, we 
an drop the last termabove and writelimN 1N NXt=1ffz�1[C(z)�A(z)℄Q(t; z) �B(z)P (t; z)gw(t)+fB(z)R(t; z) � zB(z)P (t; z) �A(z)Q(t; z)gy�(t+ 1)g2 = 0a.s.Sin
e limt k�(t) � �(t � 1)k = 0 a.s., and sin
e fy�(t + 1)g is bounded, we
an repla
e R(t; z), P (t; z) and Q(t; z) above by R(t� n; z), P (t� n; z) andQ(t� n; z), respe
tively, for any n. ThuslimN 1N NXt=1ffz�1[C(z)�A(z)℄Q(t � n; z)�B(z)P (t� n; z)gw(t)+fB(z)R(t� n; z)� zB(z)P (t� n; z)�A(z)Q(t � n; z)gy�(t+ 1)g2 = 0a.s20



Choose n larger than (p+ q+ s), and then we 
an apply Lemma 11 of [6℄ todedu
e thatlimN 1N NXt=1fz�1[C(z)�A(z)℄Q(t � n; z)�B(z)P (t� n; z)g2 = 0 a.s.(27)by whi
h we mean that the average of the square of ea
h 
oeÆ
ient of thepolynomial in z is 0; and alsolimN 1N NXt=1ffB(z)R(t � n; z)� zB(z)P (t� n; z)�A(z)Q(t� n; z)gy�(t+ 1)g2 = 0a.s. (28)Furthermore sin
e fy�(t)g is bounded, (27) also implies thatlimN 1N ff[C(z)�A(z)℄Q(t � n; z)� zB(z)P (t� n; z)gy�(t+ 1)g2 = 0a.s.(29)Subtra
ting (28) appropriately from (29), we getlimN 1N NXt=1f[C(z)Q(t � n; z)�B(z)R(t� n; z)℄y�(t+ 1)g2 = 0 a.s.(30)Changing t� n ba
k to t in (27) and (30), we arrive atlimN 1N NXt=1fz�1[C(z)�A(z)℄Q(t; z) �B(z)P (t; z)g2 = 0 a.s. (31)limN 1N NXt=1f[C(z)Q(t; z) �B(z)R(t; z)℄y�(t+ 1)g2 = 0 a.s. (32)Now let us treat the 
ases separately.Case 1: Strong suÆ
ient ri
hness of order greater than or equal to (q +s). This 
ase in
ludes the general tra
king problem as well as the linearmodel following problem with the order of suÆ
ient ri
hness as shown. Sin
efy�(t)g is strongly suÆ
iently ri
h of order greater than or equal to (q+ s),there exist n and � > 0 su
h that for all large t,1nPt+nk=t+1(y�(k + 1); : : : ; y�(k � q � s+ 2))(y�(k + 1); : : : ;y�(k � q � s+ 2))T � �Is+q: (33)21



De�nes0(t) + s1(t)z + � � �+ sq+s�1(t)zq+s�1 := S(t; z) := C(z)Q(t; z) �B(z)R(t; z):Then (32) 
an also be written aslimm 1m mXj=18<: 1n jn+nXk=jn+1[S(k; z)y�(k + 1)℄29=; = 0 a.s.Sin
e limt k�(t)� �(t� 1)k = 0, we 
an repla
e S(k; z) by S(jn; z) to getlimm 1m mXj=18<: 1n jn+nXk=jn+1[S(jn; z)y�(k + 1)℄29=; = 0 a.s. (34)De�ne kS(t; z)k2 :=Pq+s�1i=0 s2i (t) and (33) implies that1n jn+nXk=jn+1[S(jn; z)y�(k + 1)℄2 � �kS(jn; z)k2 for all largej:From (34) it follows thatlimm 1m mXj=1 kS(jn; z)k2 = 0 a.s. (35)Again, sin
e limt k�(t)� �(t� 1)k = 0 a.s., (35) implies thatlimN 1N NXt=1 kS(t; z)k2 = 0 a.s. (36)Adding (31) and (36) giveslimN 1N NXt=1fz�1[C(z)�A(z)℄Q(t; z) �B(z)P (t; z)g2+fC(z)Q(t; z) �B(z)R(t; z)g2 = 0 a.s.Hen
e there is a 
ommon subsequen
e ftkg su
h thatlimk fz�1[C(z)�A(z)℄Q(tk; z)�B(z)P (tk; z)g = 0 a.s. (37)22



and limk fC(z)Q(tk; z)�B(z)R(tk; z)g = 0 a.s. (38)Sin
e f�(t)g is bounded, we 
an also assume without loss of generality thatlimk Q(tk; z) =: Q(z); limk P (tk; z) =: P (z); limk R(tk; z) =: R(z) a.s. (39)exist. Hen
e (37) and (38) implyz�1[C(z)�A(z)℄Q(z) �B(z)P (z) = 0 a.s. (40)C(z)Q(z) �B(z)R(z) = 0 a.s. (41)However, Q(z) and P (z) are polynomials of degrees less than or equal to(q � 1) and (p _ s� 1), respe
tively. Hen
e (40) and our assumption (19d)imply that Q(z) = �B(z) and P (z) = �z�1[C(z)�A(z)℄ (42)for some random s
alar �. Then (41) also shows the R(z) = �C(z). Moreover� 
annot be 0, sin
e otherwise limk �(tk) = 0, whi
h is ruled out by (22
)and (19g). From (22d) we obtain the desired result.Case 2: Linear model following problem with l(q+s). Sin
e limt(ym(t)�y�(t)) = 0, we 
an repla
e y � (t+ 1) by ym(t+ 1) in (32). If s+ 1 � lq+ s,we shall hen
eforth de�ne G(z) := C(z), while if l � s, G(z) is de�ned aspreviously by (15) and (16). In the latter 
ase also, from (9) and (17) wehave C(z)ym(t+ 1) = G(z)ym(t+ 1). Hen
e in any 
ase,limN 1N NXt=1[G(z)Q(t; z) �B(z)R(t; z)℄fym(t+ 1)g2 = 0 a.s. (43)Applying Lemma 2 to (43) and (31) we obtain that there is a subsequen
eftkg su
h that (37) holds and alsolimk [G(z)Q(tk; z) �B(z)R(tk; z)℄ = K(z)H(z) a.s.Without loss of generality we 
an also suppose that the limits in (39) exist.Hen
e G(z)Q(z)�B(z)R(z) = K(z)H(z) a.s. (44)23



Also through (31), (40) gives (42). Substituting (42) in (44) yieldsB(z)[�G(z)�R(z)℄ = K(z)H(z) a.s.Now note that by (11b) all the roots of H(z) are exa
tly on the unit 
ir
le,while all the roots of B(z) are stri
tly outside the unit 
ir
le by (19a). Hen
e�G(z)�R(z) = J(z)H(z) a.s.for some polynomial J(z). However [�G(z)�R(z)℄ is a polynomial of degreeless than or equal to l � 1, while H(z) is a polynomial of degree exa
tly l.Hen
e �G(z)�R(z) = 0 a.s. (45)(42) and (45) now yield the theorem.It is of interest to note that Caines and Lafortune [8℄ have suggestedan adaptive 
ontroller whi
h tra
ks y�(t) perturbed by white noise. Su
h aperturbed referen
e traje
tory is strongly suÆ
iently ri
h of arbitrary largeorder (e�e
tively 1).Having proved 
onvergen
e of the parameters to ��Æ under the 
onditionsof Theorem 6, we now have the following results.Theorem 7.(i) In the general tra
king problem suppose fy�(t)g is strongly suÆ
ientlyri
h of order greater than or equal to (q + s). Thenlimt 1
0(t) (�1(t)� 
1(t); : : : ; �p(t)� 
p(t); �1(t); : : : ; �q(t); 
1(t); : : : ; 
s(t))(46)= (a1; : : : ; ap; b1; : : : ; bq; 
1; : : : ; 
s) a.s.(with 
i(t) := 0 for i > s):Thus the parameter estimates are strongly 
onsistent. Alsolimt 1�1(t) (�1(t); : : : ; �p_s(t); �2(t); : : : ; �q(t); 
0(t); : : : ; 
s(t)) (47)= 1b1 (a1 + 
1; : : : ; ap_s + 
p_s; b2; : : : ; bq; 1; 
1; : : : ; 
s) a.s.setting ai := 0 for i > p and 
i := 0 for i > s. Hen
e the adaptive
ontrol law (5) self-tunes to the optimal 
ontrol law a.s.24



(ii) In the linear model following problem with l > s the results (46) and(47) 
ontinue to hold.(iii) In the linear model following problem with l � s we have,limt 1�1(t)(�1(t); : : : ; �p_s(t); �2(t); : : : ; �q(t); 
0(t); : : : ; 
l�1(t))= 1b1 (a1 + 
1; : : : ; ap_s + 
p_s; b2; : : : ; bq; g0; : : : ; gl�1)setting ai := 0 for i > p and 
i := 0 for i > s. Here fg0; : : : ; gl�1g arede�ned by (15), (16). Hen
e the adaptive 
ontrol law self-tunes to theoptimal 
ontrol law a.s.7 Con
luding RemarksWe have proved the 
onvergen
e of the parameter estimates and the self-tuning property for the adaptive tra
king problem, justifying the name ofself-tuning tra
kers.For the general tra
king problem, the 
onvergen
e depends on whetherthe referen
e traje
tory is suÆ
iently ri
h of appropriate order, as shown inTheorem 7. In the important 
ase of referen
e traje
tories whi
h are not sori
h, we have examined the linear modeling problem, and shown how one 
anadjust the dimension of the parameter estimator to the order of suÆ
ientri
hness so as to obtain a self-tuning tra
ker. It is worth noting that theadaptive 
ontroller need not be provided with pre
ise information su
h asamplitude, frequen
y or phases of the sinusoids in the referen
e traje
tory.It is enough to know only the number of su
h 
omponents.An important appli
ation, whi
h is a spe
ial 
ase of these results, is theproblem of maintaining the output at a 
onstant level, i.e., the set-pointproblem. The 
onstant traje
tory is suÆ
iently ri
h of only order 1, andonly one parameter need be estimated to 
ompensate for the 
olored noiseand reje
t it optimally.Among the outstanding problems still left unresolved are the following:(i) Does the least squares based parameter estimation algorithm also pos-sess the above properties? This is of vital interest be
ause the rateof 
onvergen
e of least squares based algorithms has been observed tobe superior to the type of parameter estimation algorithm 
onsideredhere. 25



(ii) What robustness properties do these types of self-tuning adaptive 
on-trol laws possess?A
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