
1

Online Routing and Scheduling With Capacity
Redundancy for Timely Delivery Guarantees in

Multihop Networks
Han Deng*, Tao Zhao*, and I-Hong Hou

Abstract—It has been shown that it is impossible to achieve
stringent timely delivery guarantees in a large network without
having complete information of all future packet arrivals. In
order to maintain desirable performance in the presence of
uncertainty of future, a viable approach is to add redundancy
by increasing link capacities. This paper studies the amount of
capacity needed to provide stringent timely delivery guarantees.
We propose a low-complexity online algorithm and prove that
it only requires a small amount of redundancy to guarantee the
timely delivery of most packets. Further, we show that in large
networks with very high timely delivery requirements, the redun-
dancy needed by our policy is at most twice as large as a the-
oretical lower bound. For practical implementation, we propose
a distributed protocol based on this centralized policy. Without
adding redundancy, we further propose a low-complexity order-
optimal online policy for the network. Simulation results show
that our policies achieve much better performance than other
state-of-the-art policies.

Index Terms—Competitive ratio, cyber-physical systems, mul-
tihop networks, online algorithms, optimal scheduling.

I. INTRODUCTION

Many emerging safety-critical applications for Internet of
Things and Cyber-Physical Systems require communication
protocols that support stringent timely delivery guarantees
for packet transmissions in multihop networks. In a typical
scenario, when sensors detect unusual events that can cause
system instability, they send out this information to actuators
or control centers. This information needs to be delivered
within a strict deadline for actuators or control centers to
resolve the unusual events. The system can suffer from a
critical fault when a small portion of packets fail to be
delivered in time.

Despite the huge literature on quality of service (QoS),
there is little work that can provide stringent timely delivery
guarantees, especially when packet arrivals are time-varying
and unpredictable. The lack of progress is mainly caused by
two fundamental challenges. On one hand, practical solutions
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need to rely on online policies that do not have knowledge of
future packet arrivals and thus often suboptimal compared to
offline policies. On the other hand, in a multihop network, the
scheduling decision of one communication link will impact the
decisions of subsequent links. The negative effects of subop-
timal decisions by online policies therefore get accumulated
along the path of multihop transmissions. In fact, a recent
work by Mao et al. [2] has proved that the performance of
any online policies deteriorates as the maximum route length
in the network increases. As a result, no online policy can
provide reasonable performance guarantees when the size of
the network is large.

In order to achieve desirable performance using online
policies, a viable approach is to add redundancy into the
system. During system deployment, it is common practice to
provision redundant capacities of communication links. Such
redundancy can alleviate the negative impacts of suboptimal
decisions by online policies. Using this approach, a critical
question is to determine the amount of redundancy needed to
provide the desirable performance guarantees. This paper aims
to answer this question.

We first show that the problem of maximizing the number
of timely packet deliveries can be formulated as a linear pro-
gramming problem when one knows the complete knowledge
of all future packet arrivals. In the setting of online policies,
some of the parameters of this linear programming problem
will only be revealed when the corresponding packets arrive.
Therefore, online policies need to make routing and scheduling
decisions for packets without knowing all parameters. On
the other hand, we also observe that adding redundancy by
increasing link capacities is equivalent to relaxing a subset
of constraints in the linear programming problem. Based on
these observations, we define a competitive ratio that, given
the amount of redundancy, quantifies the relative performance
of online policies in comparison to the optimal offline solution.

Using the primal-dual method [3], we propose an online
policy that achieves good performance in terms of competitive
ratio. This policy has several important features: First, when
there is no redundancy added to the system, the performance of
our online policy is asymptotically better than that of the recent
work [2] when the size of the network increases. Second, we
also show that only a small amount of redundancy is needed to
achieve strict performance guarantees. Specifically, in order to
guarantee the timely delivery of at least 1− 1

θ as many packets
as the optimal solution in a network whose longest path has
length L, our policy only needs to increase link capacities by



2

at most lnL+ln θ times.1 Finally, we also show that our policy
can be implemented with very low complexity.

Next, we establish a theoretical lower bound of competitive
ratio for all online policies. We show that, in order to guarantee
a certain degree of performance, the redundancy needed by our
policy is only a small amount away from the theoretical limit.
In particular, when both L and θ go to infinity, the redundancy
needed by our policy is at most twice as large as the theoretical
limit.

To address the performance gap between the above online
policy and the theoretical lower bound, we propose another on-
line policy and prove that it is order optimal in the case where
there is no capacity redundancy in the network. Specifically,
we show that this online policy guarantees to deliver at least

1
O(logL) as many packets before their deadlines as the optimal
offline solution, where L is the maximum route length. As
Mao et al. [2] has proved no online policy can deliver more
than 1

O(logL) packets without redundancy2, our policy is order
optimal.

Noting that both the above online policies are centralized
algorithms3, we also propose a distributed protocol that is
inspired by the design principles of our centralized online
policies. This distributed protocol only requires each node to
broadcast its local load information infrequently, and therefore
it only incurs a small amount of communication overhead.
When a packet arrives at a source node, the source node
determines a suggested route for the packet using its received
load information. Each link on the route makes scheduling
decisions solely based on its local information.

All our three policies are evaluated by simulations, and
compared with the well-known earliest deadline first (EDF)
policy and the online policy proposed by Mao et al. [2], which
will be denoted by MKS afterwards. Simulation results show
that all our policies perform better than the other two policies
in most cases under various system settings.

The rest of the paper is organized as follows. Section II
reviews related work. Section III introduces our system model
and defines the competitive ratio. Section IV proposes our first
online policy and studies its competitive ratio and computation
complexity. Section V establishes a theoretical lower bound
of competitive ratio. Section VI proposes an order-optimal
policy and proves its competitive ratio. Section VII proposes a
distributed protocol based on the intuitions of our centralized
online policies. Section VIII provides simulations on our
proposed policies and compare them with EDF and MKS.
Finally, Section IX concludes this paper.

II. RELATED WORK

Online scheduling in real-time environment has been ex-
tensively studied. Studies show that the earliest deadline first

1When the optimal policy delivers all packets in time, θ is the loss
frequency, i.e. the number of packet losses per unit time, under the online
policy, and 1− 1

θ
is the delivery ratio, i.e. the percentage of delivered packets

among all packets, of the online policy.
2The original paper contains an error that is fixed in http://newslab.ece.

ohio-state.edu/research/resources/Mao errata.pdf.
3We use the words “algorithm” and “policy” interchangeably in this paper.

(EDF) algorithm [4] and the least laxity first (LLF) algo-
rithm [5] achieve the same performance as the optimal offline
algorithm in an underloaded uniprocessor system. Considering
overload, Baruah et al. [5] proved that no online algorithm can
guarantee to serve more than 1/4 of the jobs that can be served
by optimal offline algorithm and provided an algorithm in a
uniprocessor system which achieves the 1/4 bound. Goldman
et al. [6], Goldwasser and Kerbikov [7], and Goldwasser [8]
considered admission control in online scheduling. When all
jobs have equal length, the best deterministic algorithm is
(1 + 1/(bkc + 1))-competitive, where k ≥ 0 denotes the
willingness of a job to endure a delay before being served.

Besides the uniprocessor case, online scheduling with mul-
tiple servers has also been studied. Goldwasser and Pedigo [9]
studied the scheduling of equal-length jobs on two identical
machines. Ding and Zhang [10], Ding et al. [11], and Eben-
lendr and Sgall [12] studied the case with parallel machines.
The scheduler needs to decide whether to accept or reject a job
and which machine is chosen to serve the job. Ding et al. [11]
proposed an algorithm with immediate decision which has the
optimal competitive ratio of 1.8 when there are two machines
and approaches e

e−1 -competitive as the number of machines
increases. Later Ebenlendr and Sgall [12] showed that e

e−1
is the lower bound of all online algorithms with immediate
decision when the number of machines approaches infinity.

There are also many works studying the scheduling prob-
lem in multihop networks. An early study by Andrews and
Zhang [13] focuses on the problem of packet scheduling with
arbitrary end-to-end delay, fixed route, and known packet
injection rate. It proposed a distributed algorithm which
achieves a certain delay bound. Bhattacharya et al. [14]
studied the scheduling problem on a tree network. Packets
arrive at an arbitrary node and they need to be transmitted
to the root node before the deadlines. Therefore, this is
also a fixed-route problem. The shortest time to extinction
(STE) algorithm was proposed and it is shown to achieve the
performance of the optimal offline policy. Hou [15] proposed
a throughput-optimal policy for up-link tree networks with
end-to-end delay constraints and delivery ratio requirement.
Li and Eryilmaz [16] studied end-to-end deadline constrained
flow scheduling in multihop wired networks. They assumed
stochastic arrival processes and developed algorithms that
exploit the freedom of choosing service disciplines. However,
they only considered the fixed-route model and did not provide
theoretical performance analysis. Singh and Kumar [17], [18]
proposed decentralized scheduling policies which maximize
the timely throughput for multihop wireless networks based
on Markov Decision Process. However, their work consid-
ers average performance guarantees, rather than worst-case
performance guarantees. Mao et al. [2] considered a fixed-
route online scheduling problem. The network has arbitrary
packet arrival and packets have different weights. The paper
aims to maximize the total cumulative weights of packets
that reach destination before their deadline. The paper proved
that the competitive ratio of any online policy is no better
than O(logL), where L is the maximum route length. It also
proposed an online policy that is O(L logL)-competitive.

Taking online routing into account, Li et al. [19] pro-
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posed using expected end-to-end delay for path selection in
wireless mesh networks. Their work aims to minimize the
average end-to-end delay, and cannot provide guarantees on
per-packet delays. Liu and Yang [20] studied the multihop
routing problem with end-to-end hard deadlines. They devel-
oped a distributed routing algorithm called spatial-temporal
backpressure which can support any periodic traffic flows
within the throughput region. Wang et al. [21] studied the
problem of routing and scheduling in multihop wireless sensor
networks to minimize channel usage with the constraint of
end-to-end delay and proposed a sub-optimal algorithm to
the NP-complete problem. Our work will focus on online
routing and scheduling in multihop networks to guarantee
strict timely delivery requirement for any possible sequence
of packet arrivals.

There has been a line of research on online routing in
networks with bounded node buffers. Aiello et al. [22] for-
malized the system model for store-and-forward routers with
limited buffer sizes and analyzed the performance of various
online algorithms. The competitive ratios of online algorithms
have been subsequently improved on uni-directional grid
networks [23], [24], [25]. In contrast, our work considers
unbounded buffers and focuses on the requirement of link ca-
pacity redundancy to achieve strict timely delivery guarantees
in a general network.

Besides, there are many works characterizing end-to-end
delay in multihop networks. Rodoplu et al. [26] studied
the problem of dynamic estimating end-to-end delay over
multihop mobile wireless networks. Sanada et al. [27] used a
Markov-chain model to study the string topology and analyzed
the end-to-end throughput and delay. Jiao et al. [28] studied
the problem of estimating the end-to-end delay distribution for
general traffic arrival process and Nakagami-m channel model
by analyzing packet delay at each hop. In our model, end-
to-end delay is a hard requirement imposed by each arriving
packet, and a successful delivery must occur within the preset
deadline.

Our analysis follows the primal-dual method illustrated by
Buchbinder and Naor [3]. They have used the method to
study bi-criteria competitive algorithms for online routing [29].
The main difference is that we consider online scheduling
with timely delivery guarantees in addition to online routing.
Besides, we employ a different approach in analyzing the
impact of capacity redundancy, leading to a more flexible
tradeoff between redundancy and quality of service. Our
approach has been successfully applied to online job allocation
problems [30], [31].

III. SYSTEM MODEL

We consider a network with multihop transmissions. The
network is represented by a directed graph where each node
represents a router and an edge from one node to another
represents a link between the corresponding routers. Packets
arrive at their respective source nodes following some un-
known sequence. We use M to denote the set of all packets
and L the set of all links. When a packet m ∈ M arrives at
its source node sm at time am, it specifies its destination node

Fig. 1. An example network topology.

δm and a deadline fm. The packet requests to be delivered to
its destination at or before its specified deadline. Packets that
are not delivered in time do not have any value, and can be
dropped from the network. We aim to deliver as many packets
in time as possible.

We assume that time is slotted and numbered by t =
{1, 2, 3, . . . }. Different links in the network may have different
link capacities, and we denote by Cl the number of packets
that link l can transmit in a time slot. At the beginning of each
time slot, each node decides which packets to transmit over
its links, subject to capacity constraints of the links. Packets
transmitted toward a node in time slot t will be received by
that node at the end of the time slot, so that the node can
transmit these packets to subsequent nodes starting from time
slot t+ 1.

Delivering a packet to its destination at or before its deadline
requires determining two things: the route used to forward
the packet from its source to its destination, and the times at
which the packet is transmitted along its route. We define a
valid schedule for each packet m as the collection of links
of a route, as well as the times of transmissions for each of
these links, so that packet m can be delivered to its destination
in time. For example, consider the network shown in Fig. 1.
Suppose a packet arrives at node A at time slot 1, and needs
to be delivered to node F before the end of time slot 3. One
valid schedule for this packet is to transmit it over link d in
time slot 1, and then over link g in time slot 2. We use {(d, 1),
(g, 2)} to represent this valid schedule. Other valid schedules
include {(d, 1), (g, 3)}, {(e, 1), (f, 2), (g, 3)}, etc. On the other
hand, {(d,1), (g,4)} is not a valid schedule because the packet
is delivered to its destination after its deadline at time slot
3. The schedule {(d,3), (g,2)} is not valid because it would
require node D to transmit the packet over link g at time slot
2 before it receives the packet at time slot 3. For each packet
m, we let V (m) denote the set of valid schedules for m.
The problem of deciding how to deliver packets in time then
becomes one of choosing valid schedules for packets.

We use Xmk ∈ {0, 1} to indicate whether packet m chooses
valid schedule k ∈ V (m). Xmk = 1 if and only if packet m
is transmitted using valid schedule k. We aim to maximize the
total number of timely deliveries by deciding the values of all
Xmk. Our optimization problem is formally as follows:
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Schedule:

max
∑
m∈M
k∈V (m)

Xmk (1a)

s.t.
∑

k∈V (m)

Xmk ≤ 1, ∀m ∈M, (1b)

∑
(l,t)∈k

Xmk ≤ Cl, ∀l ∈ L, t ∈ {1, 2, . . . }, (1c)

Xmk ≥ 0, ∀m ∈M, k ∈ V (m). (1d)

As shown in Eq. (1a), the objective is to maximize the total
number of packets that are delivered in time. Eq. (1b) states
that at most one valid schedule can be chosen for each packet.
Eq. (1c) states that each link can transmit at most Cl packets
in any time slot. In practice, Xmk can only be either 0 or 1, but
our problem formulation allows Xmk to be any real number
in [0, 1]. Thus, the optimal solution to Schedule describes an
upper bound on the total number of timely deliveries.

If information of all packets is available when the system
starts, the optimal solution to Schedule can be found by
standard linear programming methods. In practice, however,
packets arrive sequentially, and we need to rely on online
policies that determines the values of Xmk for each arriving
packet m without knowing future packet arrivals. Without the
knowledge of future arrivals, it is obvious that online policies
cannot always achieve the optimal solution to Schedule. In
fact, Mao et al. [2] has shown that, when the maximum route
length between a source node and a destination node is L, no
online policy can guarantee to deliver more than 1

O(logL) as
many packets as the optimal solution. Therefore, when L is
large, the performance of online policies can be unacceptable
for virtually any applications.

In order to achieve good performance for online policies
in the presence of unknown future arrivals, we consider the
scenario where service providers can increase link capacities
by, for example, upgrading network infrastructures. When the
link capacities are increased by R times, link l can transmit
RCl packets in each time slot. With the capacity redundancy,
our problem can be rewritten as follows:

Schedule(R):

max
∑
m∈M
k∈V (m)

Xmk (2a)

s.t.
∑

k∈V (m)

Xmk ≤ 1, ∀m ∈M, (2b)

∑
(l,t)∈k

Xmk ≤ RCl, ∀l ∈ L, t ∈ {1, 2, . . . }, (2c)

Xmk ≥ 0, ∀m ∈M, k ∈ V (m). (2d)

To evaluate the performance of online policies, we define a
competitive ratio that incorporates capacity redundancy:

Definition 1: Given a sequence of packet arrivals, let Γopt
be the optimal value of

∑
mk:k∈V (m)Xmk in Schedule, and

Γη(R) be the number of packets that are delivered under an
online policy η when the link capacities are increased by R
times. The online policy η is said to be (R, ρ)-competitive if
Γopt/Γη(R) ≤ ρ, for any sequence of packet arrivals.

Remark: Although the competitive ratio is defined against
the relaxed problem Schedule, it is also guaranteed against the
original binary linear problem, since Γopt is an upper bound
on the optimal total number of timely deliveries.

IV. AN ONLINE ALGORITHM AND ITS COMPETITIVE
RATIO

A. Algorithm Description

In this section, we propose an online policy based on primal-
dual method [3] and analyze the competitive ratio. We first
note that the dual problem of Schedule is:

Dual:

min
∑
m

αm +
∑
l,t

Clβlt (3a)

s.t. αm +
∑

(l,t)∈k

βlt ≥ 1, ∀m ∈M, k ∈ V (m), (3b)

αm ≥ 0, ∀m ∈M, (3c)
βlt ≥ 0, ∀l ∈ L, t ∈ {1, 2, . . . }, (3d)

where αm is the Lagrange multiplier corresponding to con-
straint (1b), and βlt is the Lagrange multiplier corresponding
to constraint (1c).

By the Weak Duality Theorem, we have the following
lemma:

Lemma 1: Given any vectors of {αm} and {βlt} that satisfy
the constraints (3b)–(3d), we have

∑
m αm +

∑
(l,t) Clβlt ≥

Γopt.
We now introduce our online algorithm. Our algorithm

constructs {Xmk}, {αm}, {βlt} simultaneously while ensuring
they satisfy all constraints in Schedule(R) and Dual. As
shown in Algorithm 1, initially it sets all αm, βlt, Xmk to
be 0. When a packet m arrives, the algorithm finds the
valid schedule k∗ that has the smallest

∑
(l,t)∈k βlt among

all k ∈ V (m). Here
∑

(l,t)∈k βlt can be viewed as the total
cost of delivering packet m using the schedule k. If the
optimal cost

∑
(l,t)∈k∗ βlt ≥ 1, then the algorithm drops

packet m. On the other hand, if
∑

(l,t)∈k∗ βlt < 1, packet
m is transmitted using the valid schedule k∗. Our algorithm
then sets Xmk∗ = 1, αm = 1−

∑
(l,t)∈k∗ βlt, and updates βlt

as βlt = βlt(1 + 1
Cl

) + 1
(dl−1)Cl

for all (l, t) ∈ k∗, where dl is
chosen to be (1 + 1/Cl)

RCl . Note that our algorithm always
produces integer solutions for Xmk.

B. Complexity of the Algorithm

In step 4, the algorithm needs to find the valid schedule
k∗ that minimizes the cost of delivering packet m. We now
show that this step can be completed in polynomial time by
dynamic programming. Before presenting the algorithm, recall
that packet m joins the network at the beginning of time slot
am, and specifies its deadline as the end of time slot fm. Its
source node and destination node are sm and δm, respectively.
Therefore, a valid schedule for m is one that can deliver a
packet from node sm to node δm between time slots am and
fm.

Let Θ(v, τ) be the smallest cost of delivering packet m
among all schedules k ∈ V (m) that can deliver a packet from
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Algorithm 1 Primal Dual (PD) Algorithm
1: αm ← 0, βlt ← 0, Xmk ← 0
2: dl ← (1 + 1/Cl)

RCl ,∀l.
3: for each arriving packet m do
4: k∗ ← argmink

∑
(l,t)∈k βlt

5: if
∑

(l,t)∈k∗ βlt < 1 then
6: αm ← 1−

∑
(l,t)∈k∗ βlt

7: βlt ← βlt

(
1 + 1

Cl

)
+ 1

(dl−1)Cl
,∀(l, t) ∈ k∗

8: Xmk∗ ← 1
9: Transmit packet m using valid schedule k∗.

10: else
11: Drop packet m.
12: end if
13: end for

node sm to node v between time slots am and τ . Θ(v, τ) =∞
if there is no schedule that delivers a packet from sm to v
between time slots am and τm. Step 4 of Algorithm 1 is
then equivalent to finding the valid schedule that achieves
Θ(δm, fm). Since packet m arrives at the beginning of time
slot am, or equivalently, at the end of time slot am − 1, we
set Θ(sm, am − 1) = 0 and Θ(v, am − 1) =∞,∀v 6= sm.

There are only two different ways to deliver a packet to node
v at or before the end of time slot τ : The first is to deliver the
packet to v at or before the end of time slot τ − 1, in which
case the smallest cost is Θ(v, τ − 1). The second is to deliver
the packet to one of v’s neighbors, say, node u, at or before
the end of time slot τ − 1, and then forward the packet along
the link l from u to v at time slot τ . In this case, the cost of
delivering the packet to node v by time τ is Θ(u, τ−1)+βlτ .
Therefore, we have

Θ(v, τ) = min

{
Θ(v, τ − 1),

Θ(u, τ − 1) + βlτ , ∀l := (u, v) ∈ L.

Based on the above recursive equation, we design Algo-
rithm 2 to compute the optimal cost Θ(δm, fm) and the
optimal schedule k∗ for each packet m. In the algorithm, we
use S(v, τ) to denote the schedule that achieves Θ(v, τ).

In Algorithm 2, the inequality Θ(u, τ − 1) + βlτ < Θ(v, τ)
is only evaluated once for any link and time slot. Let E := |L|
be the number of links in the network. Let T := maxm(fm−
am+1) be the maximum relative deadline for all packets. Then
the time complexity of both Algorithm 2 and Algorithm 1 is
O(ET ).

C. Competitive Ratio Analysis

Before analyzing the performance of Algorithm 1, we first
establish a basic property of βlt.

Lemma 2: Let βlt[n] be the value of βlt after n packets are
scheduled to use link l at time t. Then,

βlt[n] =
1

dl − 1

(
d

n
RCl

l − 1
)
. (4)

Proof: First, note that the value of βlt is only changed
when Algorithm 1 uses link l at time t to transmit a packet.

Algorithm 2 Dynamic Programming
1: for each arriving packet m do
2: Θ(sm, am − 1)← 0
3: Θ(v, am − 1)←∞,∀v 6= sm
4: S(v, am − 1)← φ, ∀v
5: for τ = am to fm do
6: for node v do
7: Θ(v, τ)← Θ(v, τ − 1)
8: S(v, τ)← S(v, τ − 1)
9: for link l := (u, v) ∈ L do

10: if Θ(u, τ − 1) + βlτ < Θ(v, τ) then
11: Θ(v, τ)← Θ(u, τ − 1) + βlτ
12: S(v, τ)← S(u, τ − 1) ∪ {(l, τ)}
13: end if
14: end for
15: end for
16: end for
17: end for

Therefore, the value of βlt only depends on the number of
packets that are scheduled to use link l at time t.

We then prove (4) by induction. Initially, when n = 0,
βlt[0] = 0 = ( 1

dl−1 )(d0
l − 1) and (4) holds.

Suppose (4) holds for the first n packets. When the (n+1)-
th packet is scheduled for link l at time t, we have

βlt[n+ 1] =βlt[n]

(
1 +

1

Cl

)
+

1

(dl − 1)Cl

=
1

dl − 1

(
d

n
RCl

l − 1
)(

1 +
1

Cl

)
+

1

(dl − 1)Cl

=
1

dl − 1

[
d

n
RCl

l

(
1 +

1

Cl

)
− 1

]
We select dl = (1 + 1

Cl
)RCl , and therefore

βlt[n+ 1] =
1

dl − 1

(
d
n+1
RCl

l − 1

)
,

and (4) still holds for n+ 1. Thus, by induction, (4) holds for
all n.

Remark: Since βlt is an exponential function of the load
n
RCl

of link l at time t, we can call βlt the exponential load
of link l at time t. It is monotonic, and the value is 0 (resp. 1)
when the load is 0 (resp. 1).

We now establish the competitive ratio of Algorithm 1.
Theorem 1: Let Cmin := minCl, dmin := (1+1/Cmin)RCmin ,

and L be the longest path between a source node and a
destination node, that is, all valid schedules have |k| ≤ L, for
all m ∈ M, k ∈ V (m). Algorithm 1 produces solutions that
satisfy all constraints in Schedule(R) and Dual. Moreover,
Algorithm 1 is (R, 1 + L

dmin−1 )-competitive, which converges
to (R, 1 + L

eR−1
)-competitive, as Cmin →∞.

Proof: First, we show that the dual solutions {αm} and
{βlt} satisfy constraints (3b) to (3d). Initially, we have βlt = 0.
By Lemma 2, βlt ≥ 0 holds. Since step 6 is only used when∑

(l,t)∈k∗ βlt < 1, αm ≥ 0 holds. From step 4 and 6, we know
that αm+

∑
(l,t)∈k βlt ≥ (1−

∑
(l,t)∈k βlt)+

∑
(l,t)∈k βlt = 1.

Thus (3b) to (3d) hold.
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Next, we show {Xmk} satisfies constraints (2b) to (2d). By
step 4, the algorithm picks at most one schedule k∗ for packet
m, constraint (2b) holds. With Lemma 2, βlt = 1 when RCl
packets use link l at time t. Since a valid schedule including
(l, t) will be chosen for packet m only when

∑
(l,t)∈k∗ βlt < 1,

all (l, t) in the chosen valid schedule must have βlt < 1,
and therefore the number of packets transmitted over link l at
time t must be less than RCl. Thus, at any time t, there are
at most RCl packets using link l. Constraint (2c) holds. By
initialization and step 8, constraint (2d) holds.

We derive the ratio between
∑
m αm +

∑
(l,t) Clβlt and∑

mkXmk. Initially, both are equal to 0. We consider the
increasing amount for both when a new packet m arrives at the
network. We use ∆P (R) to denote the change of

∑
mkXmk,

and ∆D to denote the change of
∑
m αm +

∑
(l,t) Clβlt.

If packet m is dropped, both ∆P (R) and ∆D are 0. If
packet m is accepted and transmitted using valid schedule k∗,
we have Xmk∗ = 1. Thus, ∆P (R) = 1. On the other hand,
∆D is increased as:

∆D =∆αm +
∑

(l,t)∈k∗
Cl∆βlt

=(1−
∑

(l,t)∈k∗
βlt) +

∑
(l,t)∈k∗

(βlt +
1

(dl − 1)Cl
)

=1 +
∑

(l,t)∈k∗

1

(dl − 1)
≤ 1 +

L

dmin − 1

Therefore, for each packet arrival, the ratio between ∆D and
∆P (R)is no larger than 1+ L

dmin−1 if ∆D > 0. When the algo-

rithm terminates, we have
∑
m αm+

∑
(l,t) Clβlt∑

mkXmk
≤ 1 + L

dmin−1 .

By Lemma 1, Γopt∑
mkXmk

≤ 1 + L
dmin−1 , and the competitive

ratio of Algorithm 1 is (R, 1 + L
dmin−1 ). When Cmin → ∞,

dmin = (1 + 1
Cmin

)RCmin → eR, and the competitive ratio of
Algorithm 1 converges to (R, 1 + L

eR−1
).

There are several important implications of Theorem 1.
First, without increasing capacity, that is, when R = 1, the
competitive ratio of our policy is (1, O(L)). In comparison, the
MKS policy proposed by Mao et al. [2] focuses on the special
case of R = 1 and has a competitive ratio of (1, O(L logL)).
Therefore, our algorithm is asymptotically better than the MKS
online algorithm. Second, this theorem allows us to quantify
the amount of capacity needed to a certain performance
guarantee. For the PD algorithm to guarantee to deliver at
least 1− 1

θ as many packets as the optimal solution, Theorem 1
states that we only need to increase all link capacities by Rθ
times such that 1 + L

eRθ−1
≤ 1/(1− 1

θ ) = 1 + 1
θ−1 . Therefore,

we have Rθ = ln (L(θ − 1) + 1) ≤ lnL+ ln θ. For example,
if we are required to use PD to deliver 99% of the packets and
the longest path consists of 10 hops, then we need to increase
link capacities by 6.9 times.

V. A THEORETICAL LOWER BOUND FOR COMPETITIVE
RATIO

In Section IV, we showed that our PD policy is (R, 1 +
L

eR−1
)-competitive. In this section, we will establish a lower

Fig. 2. Network topology for lower bound analysis.

bound for the competitive ratio of online policies.
Theorem 2: Any online algorithm cannot be better than

(R, 1 + L−2eR

(L+1)eR−L )-competitive.
Proof: We design a network as shown in Fig 2. We start

to construct the network from an up-link tree, which is shown
as the white nodes in Fig 2. Root is marked as node D and it
is the destination of all packets. There are N levels of non-root
nodes with N nodes in each level. Each node is connected to
one node in the next level. Nodes do not share parent except
the N -th level nodes share the same root node. At the j-th
level, where 1 ≤ j ≤ N , there are

(
N

N+1−j
)

extra nodes,
which is shown as the black nodes in Fig 2, with each node
connecting to an unique set of N + 1− j nodes in this level.
For example, there is one black node connected to all white
nodes in level 1, and there are N black nodes connected to
white nodes in level 2, where each of these black nodes is
connected all but one white nodes in level 2. Likewise, there
are

(
N
N−2

)
black nodes connected to white nodes in level 3,

with each black node connected to N −2 white nodes in level
3, and no two black nodes are connected to the same subset
of white nodes.

Next, we describe packet arrivals. Packets only arrive at
black nodes. Of all black nodes connected to the same level
of white nodes, only one black node has packet arrival. Let
Wj be the set of white nodes in j-th level which connects
to the black node with packet arrivals. The black nodes with
packet arrivals are chosen such that all nodes in Wj+1 are
connected to those in Wj . Fig 3 is a simplified network of
Fig 2, where we omit the black nodes with no packet arrival
and marked each black node with a number from 1 to N .

Packets arrive at nodes 1, 2, ..., N . Their destination is node
D. Each link in the network has capacity C. At the beginning
of time slot 1, there are C packets arriving at node 1. Node 1
is connected to N links: l11, l12, · · · , l1N . At the beginning
of time slot 2, there are C packets arriving at node 2. Node 2
is connected to N − 1 links: l21, l22, · · · , l2(N−1). Similarly
for nodes 3, 4, · · · . At the beginning of time N , there are
C packets arriving at node N . The deadline of all packets is
N + 1. Node N is connected only to link lN1.

When one knows which black nodes have packet arrivals,
the offline optimal algorithm is to transmit the first C packets
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Fig. 3. Simplified network topology for lower bound analysis.

through link l11 and the following links, the second C packets
through link l21 and the following links, . . . , and the N -th C
packets through link lN1 and the following link. The total
number of delivered packets is NC.

Next we consider the online algorithm when all links’
capacity is increased by R times. Since online policies do
not know which black nodes will have packet arrivals, the
optimal online policy is to distribute packets evenly among
all connected links. That is, at time 1, each of links l1i,
i = 1, 2, · · · , N , transmit C/N packets. At time 2, each of
link l2i, i = 1, 2, · · · , (N − 1), transmits C/(N − 1) packets.
At time K, link lKi, i = 1, 2, · · · , (N − K + 1), transmits
C/(N−K+1) packets. For simplicity, we call the routes from
node 1 to node D through l1i route ri. If all packets arrive at
node K are accepted, routes ri, i = K,K + 1, · · · , N have
the same load on each link. When any link on a single route
reaches its capacity, the route cannot be used for future arrival
packets. Suppose the route gets over-loaded at time K+1, that
is, packets arrive at node K are accepted and packets arrive
at node K+1 are not fully accepted. The maximum load of a
single link on route rN is at most C

N + C
N−1 + · · ·+ C

N−K+1

and at least C
N + C

N−1 + · · ·+ C
N−K . We then have:

C(
1

N
+

1

N − 1
+

1

N − 2
+ . . .+

1

N −K + 1
) ≤ RC,

and

C(
1

N
+

1

N − 1
+

1

N − 2
+ . . .+

1

N −K
) ≥ RC.

Since∫ N+1

N−K+1

1

x
dx < (

1

N
+

1

N − 1
+

1

N − 2
+ . . .+

1

N −K + 1
),

and∫ N

N−K−1

1

x
dx > (

1

N
+

1

N − 1
+

1

N − 2
+ . . .+

1

N −K
).

We have:

log(N + 1)− log(N −K + 1) = log
N + 1

N −K + 1
< R,

and

log(N)− log(N −K − 1) = log
N

N −K − 1
> R.

Then we can derive the value of K as: N − N
eR
− 1 ≤ K ≤

N + 1− N+1
eR

. The total number of accepted packets is in the
range ((N − N

eR
− 1)C, (N + 2− N+1

eR
)C).

Thus the competitive ratio of an online policy is at best
(R, N

N+2−N+1

eR

). In Fig. 2, the longest path in the network is

between the leftmost black node and the sink, which has length
L = N + 1. The competitive ratio can then be rewritten as
(R, 1 + L−2eR

(L+1)eR−L ).
Let us once again consider the scenario where online

policies need to guarantee to deliver at least 1 − 1
θ as many

packets as the optimal solution. Theorem 2 states that any
online policy needs to increase its link capacities by at least Rθ
times so that 1+ L−2eRθ

(L+1)eRθ−L ≤ 1+ 1
θ−1 . Solving this equation,

we have Rθ needs to be at least lnL+ln θ− ln(L+2θ−1). In
comparison, our policy only needs to increase link capacities
by (lnL + ln θ) times to ensure the delivery of 1 − 1

θ as
many packets as the optimal solution. Therefore, the capacity
requirement of our policy is at most ln(L + 2θ − 1) away
from the lower bound. Suppose we fix the ratio between
L and θ, and let them both go to infinity, then we have
(lnL+ ln θ)/(lnL+ ln θ − ln(L+ 2θ − 1))→ 2. Therefore,
when both L and θ are large, our policy at most requires twice
as much capacity as the theoretical lower bound.

VI. AN ORDER-OPTIMAL ONLINE POLICY WHEN R = 1

We have shown that our PD algorithm is (R, 1 + L
dmin−1 )-

competitive. Without increasing link capacity, i.e, when R =
1, the algorithm is (1, 1 + L

e−1 )-competitive, as Cmin → ∞.
While the competitive ratio of our PD algorithm is an order
better than the MKS algorithm [2], it still fails to achieve the
theoretical bound of (1, O(logL))-competitive. In this section,
we propose another online algorithm and prove that it achieves
the theoretical bound when R = 1.

A. Algorithm Description

Similar to the design of Algorithm 1, we aim to design an
algorithm that constructs {Xmk}, {αm}, {βlt} while ensuring
they satisfy all constraints in Schedule and Dual. The algo-
rithm is described in Algorithm 3. One can see that Algorithm
3 is very similar to Algorithm 1, and their only difference lies
in the update rules for βlt. Recall that βlt[n] is the value of
βlt when link l serves a total number of n packets at time t.
Define β(x) as

β(x) :=


ex−1

L(e
1

lnL+1−1)
, if x ≤ 1

lnL+1 ;

e(x−1)(lnL+1), if x ≥ 1
lnL+1 .

(5)

Then Algorithm 3 chooses the value of βlt[n] as βlt[n] =
β( n

RCl
).

To illustrate the difference in βlt, we plot the values of βlt[n]
for a link with Cl = 1000 under the two policies in Fig. 4,
where we consider the two cases L = 8 and L = 64 for
Algorithm 3. As can be shown in the figure, when n is small,
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Fig. 4. Values of βlt[n] under different policies.

Algorithm 3 increases the value of βlt much more slowly
than Algorithm 1 does. Moreover, Algorithm 3 increases βlt
slower when L is larger. Based on this observation, we call
Algorithm 3 “PD With Slow Start (PDSS)”. Recall that both
Algorithm 1 and Algorithm 3 only schedule a packet when
mink

∑
(l,t)∈k βlt < 1. By increasing βlt slower when n is

small, Algorithm 3 ensures that more packets with long routes
can be accepted, especially when the network is lightly loaded.

Algorithm 3 PDSS: Primal Dual With Slow Start
1: Initially, αm ← 0, βlt ← 0, Xmk ← 0.
2: for each arriving packet m do
3: k∗ ← argmink

∑
(l,t)∈k βlt

4: if
∑

(l,t)∈k∗ βlt < 1 then
5: αm ← (1−

∑
(l,t)∈k∗ βlt)

6: for each (l, t) ∈ k∗ do
7: if total number of packets n at time t on link l:

n ≤ RCl
lnL+1 then

8: βlt ← 1

L(e
1

lnL+1−1)
(e

n
RCl − 1),

9: else
10: βlt ← e

( n
RCl
−1)(lnL+1)

11: end if
12: end for
13: Xmk∗ ← 1.
14: Transmit packet m using valid schedule k∗.
15: else
16: Drop packet m.
17: end if
18: end for

B. Competitive Ratio Analysis

We now prove that Algorithm 3 achieves the theoretical
bound in [2] by being (1, O(logL))-competitive.

Lemma 3: Let Cmin := minCl. In Algorithm 3, each time
a new packet is scheduled, the ratio between the change of
Schedule and Dual is bounded by 2(lnL+ 1) + B

Cmin
, where

the value of B is independent of Cmin.

Proof: If a new packet is admitted to the network, the
increasing amount of Dual is

∆D =∆αm +
∑

(l,t)∈k∗
Cl∆βlt

=1 +
∑

(l,t)∈k∗
(Cl∆βlt − βlt)

Using Taylor Sequence, we then have

∆βlt[n] := βlt[n+ 1]− βlt[n] = β(
n+ 1

Cl
)− β(

n

Cl
)

≤ 1

Cl
β′(

n

Cl
) + ε

1

C2
l

β′′(
n

Cl
),

for some bounded constant ε < ∞, where β′ and β′′ are
the first and second derivative of β, respectively. We note
that the function β(x) is continuous for all x, and infinitely
differentiable for all x except at the point x0 := 1

lnL+1 .
At the point x0, we define β′(x0) = limx→x+

0
β′(x) and

εβ′′(x0) = limx→x+
0
εβ′′(x). This ensures that the above

inequality still holds.
By (5) we know that n ≤ Cl

lnL+1 if and only if βlt[n] ≤ 1
L .

If x = n
Cl
≤ 1

lnL+1 , then β′(x) = β′′(x) = ex

L(e
1

lnL+1−1)
.

We have:

Cl∆βlt[n]− βlt[n] ≤
Cl(

1
Cl

e
n
Cl ) + ε( 1

Cl
)2e

n
Cl )− (e

n
Cl − 1)

L(e
1

lnL+1 − 1)

≤
1 + ε 1

Cl
e
n
Cl

L(1 + 1
lnL+1 − 1)

≤ lnL+ 1

L
(1 + ε

1

Cl
e)

Let B1 = εe lnL+1
L , then

Cl∆βlt[n]− βlt[n] ≤ lnL+ 1

L
+B1

1

Cmin
, (6)

when n
Cl
≤ 1

lnL+1 .
On the other hand, If x = n

Cl
≥ 1

lnL+1 , then β′(x) =

(lnL+ 1)β(x) and β′′(x) = (lnL+ 1)2β(x). We have:

Cl∆βlt[n]− βlt[n]

≤ Cl[
lnL+ 1

Cl
βlt[n] + ε(

lnL+ 1

Cl
)2βlt[n]]− βlt[n]

≤ lnL · βlt[n] +
1

Cl
ε(lnL+ 1)2βlt[n]

Let B2 = ε(lnL+ 1)2, then

Cl∆βlt[n]− βlt[n] ≤ (lnL+B2
1

Cmin
)βlt[n], (7)

when n
Cl
≥ 1

lnL+1 .
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If packet m is transmitted using valid schedule k∗, we
have Xmk∗ = 1. Thus, ∆P = 1. On the other hand, ∆D
is increased as:

∆D =1 +
∑

(l,t):(l,t)∈k∗
Cl∆βlt − βlt

≤1 +
∑

(l,t):(l,t)∈k∗,βlt≤ 1
L

Cl∆βlt − βlt

+
∑

(l,t):(l,t)∈k∗,βlt≥ 1
L

Cl∆βlt − βlt

From (6) and (7) we have:

∆D ≤1 +
∑

(l,t):(l,t)∈k∗,βlt≤ 1
L

(
lnL+ 1

L
+B1

1

Cmin
)

+
∑

(l,t):(l,t)∈k∗,βlt≥ 1
L

((lnL+B2
1

Cmin
)βlt)

From Algorithm 3 step 4 we know that
∑
βlt ≤ 1, thus we

have

∆D ≤1 + (lnL+ 1 +B1
L

Cmin
) + (lnL+B2

1

Cmin
)

=2 + 2 lnL+
B1L+B2

Cmin
,

and the proof is complete.
Theorem 3: Algorithm 3 produces solutions that satisfy all

constraints in Schedule and Dual. Moreover, it is (1, 2(1 +
lnL))-competitive, as Cmin →∞.

Proof: We use the same approach as in the proof of Theo-
rem 1 to establish that all constraints are satisfied in Schedule
and Dual. First, we show that the dual solutions {αm} and
{βlt} satisfy constraints (3b) to (3d). Initially, we have βlt = 0.
By (5), βlt ≥ 0 holds. Since step 5 is only used when∑

(l,t)∈k∗ βlt < 1, αm ≥ 0 holds. From step 3 and 5, we know
that αm+

∑
(l,t)∈k βlt ≥ (1−

∑
(l,t)∈k βlt)+

∑
(l,t)∈k βlt = 1.

Thus (3b) to (3d) hold.
Next, we show {Xmk} satisfies constraints (1b) to (1d).

By step 3, the algorithm picks at most one schedule k∗ for
packet m, constraint (1b) holds. With (5), when the number
of packets on link l at t is Cl, we have βlt = 1. Also, since a
packet is scheduled if

∑
(l,t)∈k∗ βlt < 1, we have βlt < 1 for

all (l, t) ∈ k∗. Therefore, the number of packets transmitted
on link l at any time t is at most Cl. Constraint (1c) holds.
By initialization and step 13, constraint (1d) holds.

When a new packet m arrives, it will either be dropped or
scheduled. If it is dropped, both ∆P and ∆D are 0. If it is
scheduled, both (3a) and (1a) increase. With Lemma 3, the
ratio between ∆P and ∆D is bounded by 2(1 + lnL) + B

Cmin
.

Therefore the competitive ratio of Algorithm 3 is (1, 2(1 +
lnL) + B

Cmin
)→ (1, 2(1 + lnL)), as Cmin →∞.

Thus, comparing with the result in [2], Algorithm 3 achieves
the optimal competitive ratio when R = 1.

Remark: Applying the above proof to a general R > 1 leads
to trivial results. However, PDSS performs very well when
R > 1 as suggested by Section VIII.

VII. A DISTRIBUTED PROTOCOL FOR IMPLEMENTATION

The two algorithms that we have proposed so far are both
centralized algorithms. Specifically, when a packet arrives at
a node, the node needs to have complete knowledge of all
exponential loads βlt of all links to find a valid schedule. These
algorithms are applicable in software defined networks (SDN)
where there is a centralized controller. However, in other
systems, it is preferable to have distributed algorithms which
do not require always up-to-date global information. In this
section, we propose a distributed protocol called PDD (Primal
Dual Distributed) based on the design of PD in Algorithm 1.
Note that we cannot directly employ the distributed method
by Kuhn et al. [32] since we aim to design online algorithms
without knowledge of future information.

In our distributed protocol, the task of transmitting a packet
to its destination is decomposed into two parts: First, when a
packet arrives at its source node, the node determines a sug-
gested schedule based on past system history. This suggested
schedule consists of the route for forwarding the packet, as
well as a local deadline for each link. After determining the
suggested schedule, the node simply forwards it to the first link
of the route. On the other hand, when a link receives a packet
along with a suggested schedule, the link tries to forward the
packet to the next link in the suggested schedule by its local
deadline. The link drops the packet when it cannot forward
the packet in time.

To facilitate this protocol, each link keeps track of its own
exponential load βlt, which reflects the number of packets that
have been scheduled to be transmitted over link l at time t.
The value of βlt changes over time, and is updated when more
packets are scheduled to transmit over link l at time t. Link
l, more specifically the start node of link l, broadcasts the
exponential load of its own and others which it has received
periodically so that all nodes can learn the values of βlt for all
links. Broadcasts occur infrequently to minimize its overhead
on network bandwidth. We also do not need to broadcast βlt
for time t that is before the current broadcast time.

We now describe how a node sm determines a suggested
schedule upon the exogenous arrival of a packet m at time
ta := am. Let tb be the last broadcast time. We use β̃lt to
denote the latest values of βlt that node sm has received for
all l ∈ L, t ≥ tb. Recall that in the PD Algorithm, the node
would like to find a valid schedule that minimizes

∑
(l,t)∈k βlt.

In distributed networks, the node only knows the exact values
of βlt for links that are incident to the node. However, it
receives β̃lt for all other links. In our protocol, the node treats
the time in broadcasted exponential load relatively. It assumes
that the values of βlt starting from t = ta for some other link
l are the same as β̃lt starting from t = tb respectively, that
is βlt = β̃l,t−ta+tb ,∀t ≥ ta. It then finds a valid schedule
k∗ that minimizes

∑
(l,t)∈k βlt. Similar to the original PD

algorithm, the node drops the packet if
∑

(l,t)∈k∗ βlt ≥ 1.
If
∑

(l,t)∈k∗ βlt < 1, then the node puts information of k∗

into the header of the packet, and forwards the packet to the
first link in k∗. Algorithm 4 summarizes the steps of schedule
suggestion for each packet at its source node. To solve the
optimization problem in line 7, we use dynamic programming
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similar to Algorithm 2. The difference is that when multiple
schedules achieves the optimum, we choose one of them to
be k∗ uniformly at random.

Algorithm 4 PDD: Schedule Suggestion at Source Nodes
1: for each arriving packet m do
2: ta ← am // packet arrival time
3: tb ← last broadcast time
4: β̃lt ← last broadcasted exponential load
5: βlt ← most up-to-update values, ∀t ≥ ta, l : sm ∈ l
6: βlt ← β̃l,t−ta+tb ,∀t ≥ ta, l : sm /∈ l
7: k∗ ← argmink

∑
(l,t)∈k βlt // suggested schedule

8: if
∑

(l,t)∈k∗ βlt < 1 then
9: Put k∗ in the header of packet m.

10: Forward the packet to the first link in k∗.
11: else
12: Drop packet m.
13: end if
14: end for

Since the actual values of βlt can be different from those
last broadcasted, there is no guarantee that a packet can
be delivered in time using the valid schedule k∗ even if∑

(l,t)∈k∗ βlt < 1. Therefore, when a node determines a valid
schedule k∗ for a packet, the valid schedule k∗ is treated only
as a suggestion for links in k∗. Specifically, if k∗ contains an
entry (l∗, t∗), then the link l∗ interprets k∗ as a requirement
that l∗ needs to forward the packet to the next link by t∗, or
drops the packet. When l∗ obtains the packet, it still has the
freedom to choose when to forward the packet, as long as the
packet is forwarded by the time t∗.

Next, we discuss how each link determines the actual time
to transmit each packet. Obviously, each link l∗ knows its own
βl∗t. From the design of PD, we can see that PD prefers to
transmit packets when βlt is small. Our proposed policy is
based on this principle. When a link l∗ receives a packet, it
finds the entry (l∗, t∗) from the valid schedule k∗ specified in
the header of the packet. Link l∗ then finds a time ts between
the current time and t∗ that has the smallest βl∗t, and transmits
the packet at time ts. Algorithm 5 summarizes the policy for
packet transmission on each link.

Algorithm 5 PDD: Packet Transmission on Each Link
1: for each incoming packet m on link l∗ do
2: k∗ ← suggested schedule in the packet header
3: t∗ ← t such that (l∗, t) ∈ k∗ // local deadline
4: t0 ← current time
5: ts ← argmint0≤t≤t∗ βl∗,t
6: if βl∗,ts < 1 then
7: βl∗ts ← βl∗,ts

(
1 + 1

Cl∗

)
+ 1

(dl∗−1)Cl∗

8: Transmit packet m on link l∗ at time ts.
9: else

10: Drop packet m.
11: end if
12: end for
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Fig. 5. Network topologies in simulations.

VIII. SIMULATIONS

In this section, we evaluate the performance of our policies
by simulations. We compare our policies with the EDF policy
and the MKS policy [2]. Both EDF and MKS focus on packet
scheduling, and are applicable only when the route of the
packet is given. For these two policies, we assume that each
packet is routed through the shortest path.

We consider the combinations of two network topologies,
two link capacity settings, and two traffic patterns in our
simulations. This gives us eight combinations in total. We
first introduce the two network topologies. The first one
is a small network as shown in Fig. 5a. The network has
9 nodes from node 1 to node 9. Neighboring nodes have
bidirectional links between them, and each pair of nodes can
communicate within two hops. This topology can be useful in
smart home environment where all wireless devices can talk
to a central hub (Node 5), and nearby wireless devices can
also communicate directly. The second one is a 5 × 5 grid
network which is also used by [2]. Fig. 5b depicts the grid
network. There are 80 directional links in this network. The
longest path between all pairs of nodes has a length of 24.

Given a network topology, we consider two link capacity
settings. One is “homogeneous link capacity”, where each link
in the network has a capacity of two units when R = 1. The
other is “heterogeneous link capacities”, where we choose the
link capacities to be integers uniformly at random from 1 to
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(b) Homogeneous link capacity, heavy traffic
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(c) Heterogeneous link capacities, light traffic
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(d) Heterogeneous link capacities, heavy traffic

Fig. 6. Delivery ratio comparison for the small network.

3 when R = 1.

Given a network topology and link capacity setting, we
consider two traffic patterns. The first one corresponds to light
traffic. The inter-arrival time between packets are chosen to
be 0 with probability 0.95 and 1 with probability 0.05. On
average, there are about 19.8 packets arriving in each slot.
The second pattern has heavy traffic. At the beginning of
each time slot, the number of packets arriving the system
is chosen uniformly at random from 100 to 200. For both
traffic patterns, there are 104 packets arriving at the system.
The source nodes and destination nodes are both chosen from
all nodes in the network with equal probability, and for each
packet the destination node is not allowed to be the same
as the source node. We choose the relative deadline of each
packet, the time between its arrival and deadline, to be an
integer uniformly at random from 2 to 6 for the small network
and from 2 to 10 for the 5 × 5 grid network. Simulations
end after the expiry of all packets. The average simulation
duration varies from 73 slots (small network, heavy traffic)
to 506 slots (5 × 5 grid network, light traffic). We let PDD

broadcast exponential load values every 10 slots so that there
are at least seven broadcast cycles in a typical simulation.

Since the heterogeneous link capacities and packet arrivals
are generated randomly, we report the average performance of
each algorithm over 100 runs given a particular combination
of network topology, link capacity setting, and traffic pattern.4

We measure the performance of an algorithm by its delivery
ratio. Fig. 6 and Fig. 7 compare the delivery ratios of different
algorithms against different values of R for each of the
eight combinations of network topology, link capacity setting,
and traffic pattern respectively. We can see that our PD and
PDSS algorithms outperform the two baseline algorithms in
all figures. PD and PDSS typically have similar performance
and in some cases PDSS is slightly better. Our distributed
algorithm PDD is better than the two baseline algorithms in
most cases, and the gap is larger under heavy traffic. When R
is small, PDD can be slightly worse than EDF but is still much
better than MKS. We also note that both baseline policies are

4Due to excessive memory usage and running time, we report the perfor-
mance of MKS based on the first 103 packets of each packet arrival sequence.
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Fig. 7. Delivery ratio comparison for the 5× 5 grid network.

centralized policies, while PDD is a distributed protocol. MKS
performs poorly in our simulations because the condition in
Theorem 3 in [2] is not met and the control parameter µ therein
is not fine tuned.

By comparing these figures, we can also observe that
generally the performance under light traffic is better than that
under heavy traffic, and the performance under homogeneous
link capacity is better than that under heterogeneous link
capacities. These results confirm the intuition that heavy
traffic and heterogeneous link capacities degrade the network
performance. Besides, note that in the small network, the best
algorithms can deliver almost all packets with large capacity
redundancy R, while in the larger 5 × 5 grid network, the
performance saturates at a delivery ratio of over 80%. The
reason is that the relative deadline can be smaller than the
distance between the source and the destination in the 5 × 5
grid network, making it impossible to deliver some packets in
time.

Furthermore, we focus on PDD and study the impact
of broadcast frequency over its delivery ratio performance.

Fig. 8 shows the simulation results with the small network,
homogeneous link capacity, and heavy traffic, where we report
the average performance of PDD over 100 runs for each R
and broadcast period Tb. We can observe the performance
degradation with infrequent broadcasts (i.e. large broadcast
period Tb). However, the degradation is not significant and
becomes negligible when R is large.

IX. CONCLUSION

In this paper, we have presented our study on online
routing and scheduling with capacity redundancy for timely
delivery guarantees in multihop networks. We have answered
the question that how much capacity redundancy is needed
for online algorithms to guarantee certain timely delivery
requirements. We have proposed an online algorithm PD for
routing and scheduling as packets arrive in the network. The
algorithm is proved to be (R, 1 + L

eR−1
)-competitive, where

L is the length of the longest path. We have also showed
that the complexity of PD is O(ET ), where E is the total
number of links and T is the maximum relative deadline.
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Fig. 8. Delivery ratio comparison of different PDD broadcast periods Tb. As
an example, Tb = 10 means PDD broadcasts every 10 slots.

Next, we have showed that any online algorithm cannot be
better than (R, 1 + L−2eR

(L+1)eR−L )-competitive. When both L
and the required deliver ratio are large, our PD algorithm
requires at most twice as much capacity as the lower bound.
In addition, we have proposed another online algorithm PDSS,
which is proved to be (1, O(logL))-competitive, and thus
order optimal when R = 1. Furthermore, we have proposed a
heuristic distributed algorithm PDD that only requires infre-
quent broadcast of load information. Simulation results have
demonstrated that our algorithms outperform EDF and MKS
scheduling algorithms with shortest path routing in various
network settings.

There remain many interesting open problems for future
research. The PDSS algorithm is proved to be order optimal
only when R = 1. However, simulation results suggest that
PDSS still performs very well when R > 1. It would be
interesting to study online algorithms that are order optimal for
all R. It is also of great interest to study the competitiveness
of distributed algorithms.
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