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ABSTRACT
“Edge-clouds,” which are small servers located close to mobile
users, have the potential to greatly reduce delay and backhaul traf-
fic of mobile applications by moving cloud services closer to users
at the edge. Due to their limited storage capacity, proper configura-
tions of edge-clouds have a significant impact on their performance.
This paper proposes a tractable online algorithm that configures
edge-clouds dynamically solely based on past system history with-
out any assumptions on the arrival patterns of mobile applications.
We evaluate the competitive ratio, which quantifies the worst-case
performance in comparison to an optimal offline policy, of our pol-
icy. We prove that the competitive ratio of our policy is linear with
the capacity of the edge-cloud. Moreover, we also prove that no
deterministic online policy can achieve a competitive ratio that is
asymptotically better than ours. The utility of our online policy
is further evaluated by traces from real-world data centers. These
trace-based simulations demonstrate that our policy has better, or
similar, performance compared to many intelligent offline policies
that have complete knowledge of all future arrivals.

CCS Concepts
•Networks→Cloud computing; Data center networks; •Theory
of computation→ Caching and paging algorithms;

1. INTRODUCTION
Many emerging mobile applications rely on cloud computing

technology to greatly expand the capability of resource-constrained
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mobile devices. In a typical scenario, a mobile device sends a re-
quest, such as a picture containing text in a foreign language, to a
data center, and the data center generates a response, such as trans-
lations of the text, using its massive computational power and stor-
age. However, the long distance between mobile devices and data
centers can result in significant delay and burden on the backhaul
connection, which can limit the development of real-time and data-
intensive applications. The concept of “edge-clouds,” also called
cloudlets, edge computing, fog computing, etc., has been proposed
to address this issue [4, 7, 8, 12, 15, 19]. Edge-clouds are small
servers deployed close to mobile users, such as at the locations
of cellular base stations or WiFi access points. They can host a
small number of popular services, and provide timely response to
requests of these services directly without communicating with re-
mote data centers.

Edge-clouds have very limited storage, and can only host a small
number of services. Therefore, the configurations of edge-clouds
can have significant impact on their performance. While there have
been many studies on the optimal configurations of edge-clouds,
most of them assume either that the edge-clouds have reasonably
good predictions about future requests [9, 18], or that the arrivals
of requests follow some stochastic process [2, 5, 11, 20, 21]. These
studies then use predictions or observations of past arrivals to deter-
mine the services that the edge-clouds should host, and to achieve
the optimal average performance. However, in many scenarios, re-
quests for services are generated by events in the physical world,
which is difficult to predict or model as a stochastic process. We
consider FirstNet [10], which is a network architecture designed
for first responders during emergencies, as an example. When a
catastrophic event occurs, first responders may generate a swarm of
requests based on the rapidly changing environments. Algorithms
that rely on predictions or stochastic models can result in poor per-
formance for these systems. Further, many mission-critical systems
require “worst-case” performance guarantees, instead of “average”
performance guarantees.

In this paper, we study online algorithms that reconfigure edge-
clouds dynamically without making any assumptions on the arrival
patterns of requests. We propose a model that captures the lim-
ited storage of edge-clouds, the cost of forwarding requests to re-
mote data centers, and the cost of reconfiguring the edge-clouds
by downloading the whole service application and database. We
then aim to minimize the total cost, including costs of forward-
ing requests and downloading services, for any sequence of request
arrivals. As online algorithms have no knowledge about future ar-
rivals, we evaluate the performance of an online policy by its com-
petitive ratio, defined as the largest possible ratio between the cost
of the online policy and the minimum cost, under any sequence of
arrivals.



We first focus on a homogeneous system where all services re-
quire the same amount of storage, and have the same forwarding
cost as well as the same downloading cost. Using an observation
of the optimal policy, we propose a simple online policy, retro-
spective download with least recently used (RL), for edge-cloud
reconfiguration. We prove that the competitive ratio of our RL
policy only grows linearly with the capacity of edge-clouds. We
further prove that no deterministic online algorithms can achieve a
competitive ratio that is sublinear with the capacity of edge-clouds.
Therefore, our RL policy indeed achieves the optimal asymptotic
performance.

We also address several practical issues of RL. We demonstrate
that it can be implemented as a linear-time algorithm. We also pro-
pose a simple extension of RL for heterogeneous systems where
different services may be associated with different costs, and re-
quire different amounts of storage.

We evaluate the performance of our RL policy using real-world
traces of data centers. We compare our policy against another ran-
domized online policy, and three offline policies that have the com-
plete knowledge of all future arrivals. These three policies corre-
spond to solutions based on stochastic optimization, cache man-
agement, and dynamic programming, respectively. Each of them
achieves the optimal performance under some specific scenarios.
Simulation results show that our policy achieves better, or at least
similar, performance compared to these offline policies in both ho-
mogeneous systems and heterogeneous systems.

The rest of the paper is organized as follows. Section 2 reviews
some related studies. Section 3 formally describes the problem of
edge-cloud reconfiguration. Section 4 establishes a property of the
offline optimal policy that is vital to the design of our online pol-
icy. Section 5 introduces our online policy. Section 6 derives the
competitive ratio of our policy. Section 7 establishes a lower-bound
on competitive ratio for all deterministic online policies and proves
that no deterministic online policies can be asymptotically better
than ours. Section 8 addresses some practical issues, including how
to extend our policy for heterogeneous systems and how to imple-
ment our policy with low complexity. Section 9 compares our pol-
icy against several others, including many existing offline policies,
through trace-based simulations. Finally, Section 10 concludes the
paper.

2. RELATED WORK
The dramatic increase in network traffic, particularly due to the

proliferation of mobile devices and Internet of Things (IoT), has
made it critical to offload some computing and storage jobs from
data centers to the edge. Taleb and Ksentini [19] have proposed an
architecture for edge-clouds. The utility of edge-clouds has been
demonstrated by various prototypes [14, 16].

Managing the very limited resource is a fundamental challenge
of edge-clouds. Tadrous et al. [18] have considered systems where
one can predict the popularity of services, so that edge-clouds can
proactively download and cache popular services during off-peak
hours. Llorca et al. [9] have studied the content placement problem
and proposed an optimal offline policy. These studies rely on an
accurate prediction of future requests.

There are many studies that employ stochastic optimization for
edge-cloud reconfiguration. Amble et al. [2] have considered a sys-
tem where request arrivals follow an independent and identically
distributed (i.i.d.) stochastic process with unknown distribution,
and proposed a stochastic control policy that maximizes the capac-
ity region of the system. Qiu et al. [11] employ Lyapunov optimiza-
tion to maximize the performance of edge-clouds. Borst et al. [5]
have proposed an algorithm for the caching problem in IPTV net-

works. Their studies assume a static system where the popularity
of services does not change over time. On the other hand, Wang et
al. [21] and Urgaonkar et al. [20] have considered dynamic systems
where request arrivals are modeled as a Markov process, and pro-
posed solutions that achieve the optimal long-term average perfor-
mance. However, these solutions based on stochastic optimization
cannot be applied when the request arrival process is non-ergodic.

The problem of edge-cloud reconfiguration bears some similari-
ties with the classic cache management problem in computer archi-
tecture. In the cache management problem, requests for data arrive
sequentially, and a “miss” occurs when the data is not stored in
the cache. One then needs to minimize the total number of misses.
When one has the complete knowledge of all future requests, the
famous Belady’s Algorithm [3] achieves the optimal performance.
There are many studies on the competitive ratios of online policies
without any knowledge of future requests. Sleator and Tarjan [17]
have established a least recently used (LRU) policy that has the op-
timal competitive ratio among all deterministic policies. Achlioptas
et al. [1] have studied the competitive ratios of randomized policies.
Reineke and Grund [13] have developed a tool that computes the
relative competitive ratio between two policies automatically. In
the cache management problem, one cache miss corresponds to one
download. No request forwarding to the back-end cloud is allowed.
However, in the edge-cloud reconfiguration scenario, forwarding is
permitted and incurs a smaller cost compared to downloading.

3. SYSTEM MODEL
We consider an edge-cloud system with an edge-cloud and a

back-end cloud that are connected through a backhaul connection.
The edge-cloud and the back-end cloud jointly host a set S of ser-
vices, numbered as S1, S2, . . . . The back-end cloud has massive
capacity, and can host all services. On the other hand, the edge-
cloud only has limited capacity and can only hostK services. With-
out loss of generality, we assume that, when the system starts, the
edge-cloud hosts services S1, S2, . . . , SK .

Requests for services arrive at the edge-cloud sequentially. We
use rn ∈ {S1, S2, . . . } to denote the service requested by the n-th
request. If rn is hosted by the edge-cloud when the request ar-
rives, then the edge-cloud can serve the request immediately with-
out causing any significant delay and burden on the backhaul con-
nection. On the other hand, if rn is not hosted by the edge-cloud,
then the edge-cloud has two choices: First, it can forward this re-
quest to the back-end cloud for processing. This will cause some
delay as well as some traffic on the backhaul connection. We hence
say that forwarding a request to the back-end cloud incurs a cost
of one unit. Second, the edge-cloud can instead download and
replicate the whole service rn at the edge-cloud. Downloading a
service causes much higher delay and traffic. Therefore, we say
that each service download incurs a cost of M units, with M ≥ 1.
On the other hand, since the edge-cloud hosts the service rn after
the download, it can then serve subsequent requests for rn with-
out incurring any costs. The edge-cloud can only host K services.
Therefore, when it downloads a service, it also needs to delete a
service from its storage.

We aim to minimize the total cost of the system by intelligently
reconfigure the set of services hosted by the edge-cloud. Intuitively,
if we know that a service will have a lot of requests in the near
future, we should download this service so that all these requests
only incur M units of cost. Otherwise, we should simply forward
all these requests to the back-end cloud without downloading the
service, and pay one unit of cost for each request. In practice, how-
ever, we may not have accurate prediction for future requests. In
such cases, we need to rely on online policies that assume no infor-



mation about future requests. We evaluate the performance of an
online policy by its competitive ratio, which is formally defined as
follows:

Let OPT be the optimal offline policy that minimizes the total
cost of the system. In order to minimize the total cost, OPT needs
to have full information about all future request arrivals. Let η
be an online policy that makes its decision solely based on past
events. For a given sequence of request arrivals, r1, r2, . . . , let
COPT be the total cost ofOPT , andCη be the total cost of η. Note
that the total costs, COPT and Cη , are functions of the sequence
r1, r2, . . . , but we omit the sequence to simplify notation. There
may be multiple policies that achieve the minimum cost. In this
case, we choose OPT to be one that makes the most downloads
among all policies with minimum cost. The competitive ratio of η
is then the largest possible value of Cη

COPT
, over all sequences of

request arrivals.

DEFINITION 1. An online policy η is said to be β-competitive
if Cη
COPT

≤ β, for every sequence of request arrivals.

An online policy with low competitive ratio has similar perfor-
mance with the optimal offline policy. Therefore, we aim to de-
velop an online policy with a low competitive ratio, as well as a
lower-bound of competitive ratio for all online policies.

To facilitate the analysis of online policies, we use OPT (n) to
be the subset of services hosted byOPT after the n-th arrival, for a
given sequence of request of arrivals, r1, r2, . . . . Similarly, η(n) is
defined as the subset of services hosted by η after the n-th arrival.
Again, note that OPT (n) and η(n) are functions of the sequence
of arrivals.

For a service Si, we use xi(n) := 1{rn = Si} to denote the
indicator function that the n-th request is one for service Si. There-
fore,

∑m
l=n xi(l) is the number of requests for Si between the n-th

arrival and the m-th arrival.
Before proceeding to the next section, we note that the system

model in this section is a homogeneous one: All services have the
same cost of forwarding requests, and the same cost of download-
ing. Moreover, all services require the same amount of storage.
While our analytical results mainly focus on the homogeneous sys-
tem, we will show that our policy can be easily extended to hetero-
geneous systems in Section 8, and we will evaluate our policy for
heterogeneous systems in Section 9.

4. A BASIC PROPERTY OF OPT
Given a sequence of request arrivals, calculating the optimal pol-

icy OPT may still incur high complexity. In this section, we es-
tablish a basic property of OPT that can be later used to develop
our online policy.

THEOREM 1. Suppose we are given a sequence r1, r2, . . . , and
OPT (n), which is the subset of services hosted by OPT after the
n-th arrival. If there exist m > n, a service Si /∈ OPT (n), and
another service Sj ∈ OPT (n) such that:

m∑
l=n+1

xi(l) ≥
m∑

l=n+1

xj(l) + 2M, (1)

then OPT downloads at least one service between the (n + 1)-th
arrival and the m-th arrival.

We say that a policy hosts a service if, under the said policy, the
edge-cloud hosts the service.

Figure 1: An example illustrating Theorem 1.

Before proving Theorem 1, we first use Fig. 1 to illustrate an ex-
ample. Suppose the edge-cloud can host two services, and the first
n arrivals are S1, S2, S1, S2, . . . , followed by S2, S3, S2, S3, . . . .
After the n-th arrival, OPT (n) = {S1, S2}. Between the (n+1)-
th arrival and the (n + 4M)-th arrivals, we have 2M requests
for S3 and no requests for S1, that is,

∑n+4M
l=n+1 x1(l) = 0, and∑n+4M

l=n+1 x3(l) = 2M . Theorem 1 then states that OPT down-
loads at least one service between the (n + 1)-th arrival and the
(n+ 4M)-th arrival. Note that Theorem 1 does not specify which
service to download, and which service to delete from the edge-
cloud.

We now prove Theorem 1.
PROOF OF THEOREM 1. We prove Theorem 1 by contradiction.

Suppose OPT does not download any service, and therefore does
not delete any service, between the (n+ 1)-th arrival and the m-th
arrival, that is, OPT (l) = OPT (n), for all n+ 1 ≤ l ≤ m.

We construct a different policy η as follows: η hosts the same
subset of services as OPT before the n-th arrival and after the
(m + 1)-th arrival, that is, η(l) = OPT (l), for all l ≤ n, and all
l ≥ m+1. After the n-th arrival, η downloads Si and deletes Sj so
that η(n+ 1) = OPT (n)\{Sj} ∪ {Si}. After the m-th arrival, η
downloads Sj and deletes Si, and then follows the same decisions
that OPT makes so that η(m+ 1) = OPT (m+ 1).

We now compare the costs of η and OPT . Since η and OPT
are the same before the n-th arrival and after the m-th arrival, they
incur the same amount of costs in these two durations. Between
the n-th arrival and the m-th arrival, η downloads two services and
OPT downloads none. Therefore, η needs to pay 2M units of cost.
Meanwhile, η needs to pay one unit cost for each request for Sj ,
and there are

∑m
l=n+1 xj(l) of them, whileOPT needs to pay one

unit cost for each of the
∑m
l=n+1 xi(l) requests for Si. The two

policies incur the same amount of costs for all other requests. In
summary, we have:

Cη = COPT + 2M +

m∑
l=n+1

xj(l)−
m∑

l=n+1

xi(l) ≤ COPT ,

where the last inequality follows by (1). Therefore, η also mini-
mizes the total cost. Moreover, η makes two more downloads than
OPT . Recall that OPT is defined as the policy that makes the
most downloads among all policies with minimum cost. The exis-
tence of η therefore contradicts with assumptions of OPT .

5. AN ONLINE POLICY FOR EDGE-CLOUD
RECONFIGURATION

We now introduce an online policy. The policy needs to consist
of two parts: deciding whether to download a service, and, when a
download occurs, deciding which service to delete from the edge-
cloud. We propose retrospective download with least recently used
(RL) policy that uses a retrospective download (RD) policy for
the first part, and a least recently used (LRU ) policy for the second
part.



RD is used to determine whether to download a service, and is
formally defined as follows:

DEFINITION 2. When a request rn = Si whose service is not
currently hosted by the edge-cloud arrives, RD downloads and
replicates Si at the edge-cloud if there exists a number τ and a
service Sj such that Sj ∈ RL(l) and Si /∈ RL(l), for all n− τ ≤
l ≤ n− 1, and

n∑
l=n−τ

xi(l) ≥
n∑

l=n−τ

xj(l) + 2M. (2)

The intuition of RD comes from Theorem 1. Suppose Sj ∈
OPT (n− τ), Si /∈ OPT (n− τ), and (2) holds, then Theorem 1
states that OPT downloads at least one service between the (n −
τ)-th arrival and the n-th arrival. RD then downloads Si when, in
retrospect, it findsOPT would have already downloaded a service.

When RD decides to download a service, we need to choose a
service to delete from the edge-cloud. We propose a least recently
used (LRU ) policy as follows:

DEFINITION 3. Suppose the edge-cloud decides to download a
service at the n-th arrival. For each service Si currently hosted
by the edge-cloud, let τi be the smallest number such that there are
2M requests for Si in the past τi arrivals, that is,

∑n
l=n−τi xi(l) =

2M . LRU deletes the service with the largest τi.

A service with large τi does not have many recent requests, since
it needs to go further back in time to find 2M requests. LRU
therefore deletes the service that is least recently used.
RL usesRD to decide whether to download a service, andLRU

to decide which service to delete. We use Fig. 1 to illustrate the
operation of RL. Suppose RL(n) = {S1, S2}, that is, RL hosts
S1 and S2 after the n-th arrival. At the (n + 4M)-th arrival, we
find that

∑n+4M
l=n+1 x3(l) = 2M ≥

∑n+4M
l=n+1 x1(l) + 2M , and RD

decides to download S3 at the (n + 4M)-th arrival. Meanwhile,
between the n-th arrival and the (n+4M)-th arrival, there are 2M
requests for S2 and none for S1. We then have τ1 > τ2 = 4M ,
and LRU decides to delete S1 to accommodate S3.

6. THE COMPETITIVE RATIO OF RL
This section establishes the competitive ratio of RL by proving

the following theorem:

THEOREM 2. RL is 10K-competitive, where K is the number
of services that can be hosted by the edge cloud.

6.1 Overview of the Proof
We will compare the performance of RL and OPT . Given

OPT and the arrival sequence, we can divide the arrival sequence
into frames, {1, 2, . . . , t1}, {t1 + 1, t1 + 2, . . . , t2}, . . . , so that
OPT downloads services only at the end of frames, i.e., after the
t1-th, t2-th, . . . , arrivals.

We will calculate the costs of OPT and RL in each frame. We
define the cost of OPT in a frame as the sum of the download cost
at the beginning of the frame and all the costs of forwarding re-
quests to the back-end cloud during the frame. On the other hand,
it can be challenging to define the cost of RL in each frame prop-
erly. Consider the example in Fig. 2. RL downloads S3, and incurs
M units of download cost, shortly after the second frame begins.
The decision to download S3 actually involves many requests in
the first frame. It is then unreasonable to count all the M units of
download cost against the second frame. Instead, we separate the

Figure 2: An example for dividing the costs into frames.

M units of download cost as follows: Suppose there are only 2kM ,
k < 1, requests for S3 in the second frame when RL downloads it,
we say that the download is a partial download of fraction k, and
only incurs kM units of cost. On the other hand, another partial
download of fraction 1− k occurs at the end of the first frame, and
incurs (1− k)M units of cost. This separation does not change the
total cost of RL. To further simplify notation in the next section,
we say that, at the end of a frame, all services not in RL have a
partial download, possibly with fraction 0. The cost of RL in a
frame will then consist of all the download costs, including those
from partial downloads, and all the costs of forwarding requests to
the back-end cloud, in this frame.

Below, we will calculate the costs of OPT and RL in each
frame, and prove Theorem 2 by showing that RL incurs at most
10K times as much cost as OPT in each frame.

6.2 Costs in a Frame
Without loss of generality, we calculate the costs in a frame [tg+

1, tg+1]. We use COPT (g) and CRL(g) to be the costs of OPT
and RL in this frame, respectively.

We first consider a service Si ∈ OPT (tg + 1). Suppose that
RL downloads Si a total number of Ei times, and deletes it from
the edge-cloud Di times. Note that Ei includes partial downloads.
Also, Di ≥ Ei − 1, as a service needs to be deleted first in order
to be downloaded again.

Let fi,z be the number of requests for Si that RL forwards to
the back-end cloud between the (z − 1)-th download and the z-th
download of Si. Fig. 3 illustrates an example of the downloads and
deletions of Si in a frame, as well as the definition of fi,z . Si then
incurs at most

EiM +
∑
z

fi,z (3)

units of cost under RL.
On the other hand, we have the following lemma for OPT :

LEMMA 1. Suppose there exists n < m, and Si such thatOPT (l) =
OPT (n), Si ∈ OPT (l), and Si /∈ RL(l), for all n ≤ l ≤ m,
then the number of requests that OPT forwards to the back-end
cloud between the n-th arrival and the m-th arrival is at least

m∑
l=n

xi(l)− 4M. (4)

PROOF. See Appendix A.

By Lemma 1, if fi,z > 4M , for some i, z, then, during the time
of these fi,z requests for Si, OPT forwards at least fi,z − 4M
requests to the back-end cloud, and incurs at least fi,z − 4M units
of cost. Apply this argument for all z, and we have COPT (g) ≥

We say that the beginning of the frame is also the 0-th download
of Si.



Figure 3: An example of the downloads and deletions of Si in a frame.

∑
zmax{0, fi,z−4M}+M , where the last term is the download

cost at the beginning of the frame. We now have the first bound on
COPT (g):

COPT (g) ≥ max
i:Si∈OPT (tτ+1)

Ei∑
z=1

max{0, fi,z − 4M}+M

≥ max
i:Si∈OPT (tτ+1)

Ei∑
z=1

fi,z − 4MEi +M =: B1. (5)

Next, we consider the deletion of Si. We have the following
lemma for OPT .

LEMMA 2. SupposeRL deletes a service Si at the n-th arrival
and at the m-th arrival, n < m, and OPT (l) = OPT (m), for
all n ≤ l ≤ m, then OPT forwards at least 2M requests to the
back-end cloud between the n-th arrival and the m-th arrival.

PROOF. See Appendix B.

By Lemma 2, for every z > 1, OPT forwards at least 2M
requests between the (z − 1)-th deletion and the z-th deletion of
Si. This gives us the second bound on COPT (g):

COPT (g) ≥ max
i:Si∈OPT (tτ+1)

2M(Di − 1) +M

≥ max
i:Si∈OPT (tτ+1)

2MEi − 3M =: B2. (6)

Finally, we consider a service Sj /∈ OPT (tg + 1). Suppose
there are Aj requests for Sj in this frame. OPT needs to forward
all these requests to the back-end cloud, for all Sj /∈ OPT (tg+1),
which gives us the third bound on COPT (g):

COPT (g) ≥
∑

j:Sj /∈OPT (tτ+1)

Aj +M =: B3. (7)

On the other hand, with the concept of partial download, RL
downloads Sj at most Aj

2M
times. Sj then at most incur an amount

of

Aj +M × Aj
2M

= 1.5Aj (8)

units of cost.
Combining (3) and (8) gives us a bound on CRL(g):

CRL(g) ≤
∑

i:Si∈OPT (tτ+1)

(EiM+
∑
z

fi,z)+
∑

j:Sj /∈OPT (tτ+1)

1.5Aj

(9)
We are now ready to prove Theorem 2.

Figure 4: An example for the proof of Theorem 3.

PROOF OF THEOREM 2.

CRL(g)

≤
∑

i:Si∈OPT (tτ+1)

(EiM +
∑
z

fi,z) +
∑

j:Sj /∈OPT (tτ+1)

1.5Aj

≤K

 max
i:Si∈OPT (tτ+1)

(EiM +
∑
z

fi,z) +
∑

j:Sj /∈OPT (tτ+1)

1.5Aj


≤K(B1 + 2.5B2 + 6.5B3) ≤ 10KCOPT (g),

for every frame.

7. A THEORETICAL LOWER BOUND OF
THE COMPETITIVE RATIO

In this section, we prove that the competitive ratio of any deter-
ministic online policy is at least K. Since the competitive ratio of
RL is 10K = θ(K), this implies that RL is asymptotically opti-
mal among all deterministic online policies.

THEOREM 3. The competitive ratio of any deterministic online
policy is at least K.

PROOF. Given a deterministic online policy η, we construct a
sequence of arrivals as follows: When the system starts, the first
δ1 arrivals are all requests for a service Z1 /∈ {S1, S2, . . . , SK}.
Recall that the edge-cloud hosts services {S1, S2, . . . , SK} when
the system starts. Therefore, the serviceZ1 is not initially hosted by
the edge-cloud. If η never downloads Z1, then we choose δ1 to be
arbitrarily large, and the system ends after δ1 arrivals of Z1. In this
case, OPT can download Z1 at the first arrival, and only incurs a
cost ofM , while η incurs a cost of δ1. The competitive ratio of η is
then δ1

M
, which can be made arbitrarily large. From now on, we can

assume that η downloads Z1 after a finite number of requests for
Z1, and choose the value of δ1 so that η downloads Z1, and deletes
a service, after δ1 arrivals of Z1. Let Z2 ∈ {S1, S2, . . . , SK} be
the service that η deletes.

We construct the remaining of the sequence of arrivals itera-
tively: For all 1 < u ≤ K, there are δu requests for service Zu
after the first

∑u−1
v=1 δv arrivals. If η never downloads Zu, we can

make the competitive ratio arbitrarily large by choosing δu to be
arbitrarily large. Therefore, we can assume that η downloads Zu
after a finite number of requests for Zu, and choose δu to be that
number. Let Zu+1 ∈ {S1, S2, . . . , SK , Z1} be the service that η



deletes when it downloads Zu. The system ends after the last δK
requests for ZK . Fig. 4 illustrates such a sequence.

By the construction of our sequence, η makes K downloads and
therefore incurs a cost of at least KM . On the other hand, there
are at most K different services among {S1, S2, . . . , SK , Z1} that
have any requests in this sequence. Therefore, at least one service
in {S1, S2, . . . , SK} does not have any requests. Let Z∗ be that
service. An offline policy can then download Z1 and delete Z∗

when the system starts. This only incurs a cost of M , as all sub-
sequent requests are hosted by the edge-cloud after the first down-
load. Therefore, the competitive ratio is at least KM

M
= K.

8. PRACTICAL ISSUES

8.1 Extensions to Heterogeneous Systems
Our analysis so far has assumed that all services are homoge-

neous. In practice, some services are very sensitive to delays, while
others are not. Different services also require different storage and
have different download cost. We now discuss how to address these
heterogeneous features.

We model the heterogeneous features as follows: Forwarding a
request for Si to the back-end cloud incurs a cost of Fi, and down-
loading the service Si to the edge-cloud incurs a cost of Mi, with
Mi ≥ Fi ≥ 1. Each service Si requires a storage space ofWi, and
the edge-cloud only has a capacity of K. Therefore, if the edge-
cloud hosts a subset T of services, we then have

∑
i:Si∈TWi ≤

K. Our previous analysis corresponds to the special case where
Fi ≡ 1, Mi ≡M , and Wi ≡ 1.

We have the following theorem for OPT in heterogeneous sys-
tems:

THEOREM 4. Suppose we are given a sequence r1, r2, . . . , and
OPT (n), which is the subset of services hosted by OPT after the
n-th arrival. If there exists m > n, a service Si /∈ OPT (n), and
another service Sj ∈ OPT (n) with Wi ≤Wj such that:

m∑
l=n+1

Fixi(l) ≥
m∑

l=n+1

Fjxj(l) +Mi +Mj , (10)

then OPT downloads at least one service between the (n + 1)-th
arrival and the m-th arrival.

PROOF. The proof is virtually the same as the proof of Theo-
rem 1.

With the intuition provided by Theorem 4, we can modify RD
and LRU as follows:

DEFINITION 4. When a request rn = Si whose service is not
currently hosted by the edge-cloud arrives, RD downloads and
replicates Si at the edge-cloud if there exists a number τ and a
service Sj such that Sj ∈ RL(l) and Si /∈ RL(l), for all n− τ ≤
l ≤ n− 1, and

n∑
l=n−τ

Fixi(l) ≥
n∑

l=n−τ

Fjxj(l) +Mi +Mj . (11)

DEFINITION 5. Suppose the edge-cloud decides to download a
service at the n-th arrival. For each service Si currently hosted
by the edge-cloud, let τi be the smallest number such that 2Mi ≤∑n
l=n−τi Fixi(l). LRU sorts all services in descending order of

τi, and deletes services in this order until there is enough space to
download the new service.

8.2 Implementation and Complexity
This section discusses the implementation and complexity of

RL. We focus on the homogeneous system to simplify notation.
However, it is straightforward to extend the implementation for het-
erogeneous systems.

We first discuss the implementation of the retrospective down-
load (RD) policy. Define

bij(n)

:=

[
max

τ :i∈RL(l),j /∈RL(l),∀n−τ≤l≤n−1

n∑
l=n−τ

xj(l)−
n∑

l=n−τ

xi(l)

]+
,

for all i ∈ RL(n − 1) and j /∈ RL(n − 1), where x+ :=
max{0, x}. By the definition of RD, a service Sj will be down-
loaded at the n-th arrival if bij(n) ≥ 2M , for some i ∈ RL(n−1).
Finding the value of bij(n) can be transformed into the well-known
maximum subarray problem as follows: Construct a sequence of in-
tegers {an} such that an = 1 if xj(n) = 1, an = −1 if xi(n) = 1,
and an = 0, otherwise. We then have

bij(n) =

[
max

τ :i∈RL(l),j /∈RL(l),∀n−τ≤l≤n−1

n∑
l=n−τ

al

]+
,

which can be computed easily as follows: If service Si is down-
loaded at the n-th arrival, set bij(n) = 0, for all j. Otherwise,
bij(n) = [bij(n− 1) + xj(n)− xi(n)]+.

Next, we discuss the implementation of LRU . When RL de-
cides to download a service, LRU needs to compute τi for all ser-
vices Si hosted by RL, where τi is chosen so that there are 2M
requests for Si in the last τi requests. In order to obtain τi, each
service can maintain the arrival times of its last 2M requests, which
can be easily done by using a queue of size 2M to store the arrival
times of past requests.

It is straightforward to extend the above discussions for hetero-
geneous systems. The complete pseudocode of RL for heteroge-
neous systems is described in Alg. 1. It is easy to check that the
time complexity of RL is O(|S|) for homogeneous systems and
O(K|S|) for heterogeneous systems, where |S| is the number of all
services. The space complexity is O(|S|2). Even when the number
of unique services is as large as 104, the memory footprint ofRL is
only about 400MB, which is easily manageable for most modern
data center servers.

9. TRACE-BASED SIMULATIONS
In this section, we compare the performance ofRL against three

offline policies and one online policy using real-world data traces.

9.1 Overview of the Trace
We use a data set from Google cluster [6] to obtain the sequences

of service requests. This data set registers the request arrivals from
a Google cluster over seven hours, and contains more than three
million requests. Each request has a “ParentID” that identifies its
service. In this data set, there are 9,218 unique services. The most
popular service has 208,306 requests, while 5,150 services only
have one request. In all simulations in this section, we break the
data set into ten non-overlapping parts, and run policies on these
ten parts individually. We then report the average performance of
these ten parts.

9.2 Evaluated Policies
In addition to our RL policy, we also implement three differ-

ent existing offline policies and one online policy. The three of-
fline policies are derived from the optimal solutions based on cache



Algorithm 1 Retrospective download with least recently used (RL)
bij ← 0, ∀i, j
n← 0
Initialize a queue, qi, with d 2Mi

Fi
e elements of 0, ∀i

while a new request arrives do
Suppose the request is for service i∗

n← n+ 1
Push n into qi∗ , and pop out an element
if i∗ ∈ RL(n− 1) then

Serve this request at the edge-cloud
for j /∈ RL(n− 1) do
bi∗j ← (bi∗j − Fi∗)+

else if i∗ /∈ RL(n− 1) then
m← False
for j ∈ RL(n− 1) do
bji∗ ← bji∗ + Fi∗
if bji∗ ≥Mj +Mi∗ and Wi∗ ≤ K then
m← True

if m then
τj ← n− (head of qj),∀j ∈ RL(n− 1)
Delete j in descending order of τj until there is enough
space to download i∗

Download i∗

bi∗j ← 0, ∀j
for j that have just been deleted do
bij ← 0, ∀i

else
Forward this request to the back-end cloud

management, stochastic optimization, and dynamic programming,
respectively. We describe the implementations of these policies for
both homogeneous systems and heterogeneous systems.

Belady Modified. Belady’s Algorithm is known to be the offline
optimal solution to the cache management problem in computer ar-
chitecture [3]. It minimizes cache misses by swapping in a new
item and deleting the item which will be used in the farthest future.
To adopt it in the edge cloud reconfiguration scenario, we make a
small modification and allow the requested service to be forwarded
instead of always downloaded when the next occurrence of the new
service is farther than those of the existing edge services. Belady
Modified then achieves the optimal performance when M = 1 for
homogeneous systems. For heterogeneous systems, Belady Mod-
ified keeps deleting services whose next request is farthest in the
future until it has enough space to download the new service.

Offline Static. In homogeneous systems, Offline Static computes
the frequency of all service requests and simply chooses the top
K popular services to host at the edge-cloud. In heterogeneous
systems, Offline Static hosts a subset of services so that their total
space is no more than K, and the sum of their frequencies is max-
imized. When the arrivals of requests follow an i.i.d. stochastic
process, most online policies that employ stochastic optimization
will converge to Offline Static.

Offline Iterative. Given the complete trace, it is possible to com-
pute the optimal solution,OPT , using dynamic programming. How-
ever, even for the homogeneous system, the complexity of dynamic
programming is at least O(

(|S|
K

)
) per request. Even when K is as

small as 5, our implementation finds that dynamic programming
cannot be completed within a reasonable amount of time. There-
fore, we instead implement the following iterative policy for homo-
geneous systems:

Since the edge-cloud can host K services, we say that the edge-
cloud has K spaces, numbered as L1, L2, . . . , LK , and each of
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Figure 5: Cost comparison with different download costs M .

them can host one service. Offline Iterative algorithm finds the edge
service at each of the K spaces iteratively. First, it uses dynamic
programming to find services hosted in L1 so as to minimize the
total cost when K = 1. Given the solutions for L1, L2 . . . , Lk, the
policy then uses dynamic programming to find the services hosted
in Lk+1 so that the total cost is minimized when K = k + 1,
and L1, . . . , Lk are given. This policy achieves the optimal perfor-
mance when K = 1. We only test this policy for homogeneous
systems since it cannot be easily extended for heterogeneous sys-
tems.

Online Randomized. We consider an online baseline policy in
addition to the above offline policies. Intuitively, a reasonable pol-
icy should download more often when the downloading cost is
small. When a request whose service is not hosted at the edge-cloud
arrives, Online Randomized downloads a new service with proba-
bility 1

M
, or with probability Fi

Mi
in heterogeneous systems. To

make room for the new downloaded service, Online Randomized
deletes services randomly until there is enough space to download
the new service. Since Online Randomized is a randomized policy,
we report its average performance over 10 i.i.d. simulation runs on
each part of the data set.

9.3 Performance Evaluations for Homogeneous
Systems

We implement all the above policies and run the algorithms with
different parameters of K and M . For each pair of parameters, we
evaluate the total costs over 103 requests and over 104 requests.



In each run, we set the initial edge services to be the K services
with lowest service IDs. The average costs of the aforementioned
algorithms are compared in Fig. 5 and Fig. 6.

Fig. 5 compares the costs of the above algorithms while fixing
K = 5. RL performs very well when compared with other poli-
cies. In most settings, Offline Iterative is slightly better than RL,
but the difference is very limited. We note that Offline Iterative is
a very intelligent policy that requires the knowledge of all future
arrivals and has very high complexity. The result that our policy,
being an online policy with low complexity, is only slightly worse
than Offline Iterative suggests that it works well in practice. Belady
Modified achieves better performance than RL when M = 1, as
it is indeed the optimal policy when M = 1. However, as M be-
comes larger, it quickly becomes much worse than RL. Also note
that RL has much better “real-world” performance than that the
theoretical result guarantees since the competitive ratio is based on
a worst case analysis. Offline Static can be better thanRLwhen we
only evaluate it over 103 requests, but has worse performance than
RL when we evaluate it over 104 requests. With more requests,
the system witnesses more variations, and therefore Offline Static
becomes worse. Finally, Online Randomized performs poorly in
all settings.

Fig. 6 shows the costs with different K with M = 5. Similar
to Fig. 5, Offline Iterative is only slightly better than RL in all
settings. Recall that Offline Iterative minimizes the total cost when
K = 1. This result therefore shows that ourRL is close to optimal.
Offline Static performs worse than our policy when we evaluate it
over 104 requests. Both Belady Modified and Online Randomized
are worse than RL under all settings.

9.4 Performance Evaluations for Heterogeneous
Systems

We further evaluate the performance for heterogeneous systems.
To create heterogeneity, we assign different forwarding costs Fi =
1, 2, 3, downloading costs Mi = 5, 10, 15, and space requirements
Wi = 1, 2, 3 for different services by their IDs. We set the initial
edge services with the services with lowest IDs which can fit in the
storage while skipping those exceeding the remaining capacity.

The costs of different policies with varying edge-cloud capacity
K are shown in Fig. 7. We can see that RL achieves the minimum
cost among all policies under almost all settings. Although we only
establish that RL is asymptotically optimal for homogeneous sys-
tems, this result suggests thatRL remains a desirable solution even
in heterogeneous systems.

10. CONCLUSIONS
This paper studies dynamic reconfiguration of edge-clouds. We

study a model that captures the limited capacity of edge-clouds, the
unknown arrival patterns of requests, and the operational costs of
edge-clouds, including the cost of forwarding requests to the back-
end cloud and the cost of downloading a new service. We propose
an online policy, RL, that aims to reduce the total cost under any
arbitrary sequence of arrivals. We evaluate the competitive ratio of
RL, and prove that its competitive ratio is at most 10K, whereK is
the capacity of the edge-cloud. Moreover, we prove that the com-
petitive ratio of any deterministic online policy is at least θ(K),
and therefore RL is asymptotically optimal. The performance of
RL is further evaluated through simulations using data traces from
real-world data centers. We compare RL against three offline poli-
cies and one online policy. Simulation results demonstrate that our
RL achieves better, or similar, performance compared to the other
policies in all scenarios. We will consider the theoretical analysis
of randomized polices and heterogeneous systems for future work.
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Figure 6: Cost comparison with different K.
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APPENDIX
A. PROOF OF LEMMA 1

This section provides a proof for Lemma 1. By assumptions of
the lemma, OPT (l) 6= RL(l), for all n ≤ l ≤ m. Therefore, for
every l ∈ [n,m], there exists some service that is in RL(l) but not
in OPT (l). OPT needs to forward requests for these services to
the back-end cloud. We will count the number of requests for these
services.

When RL downloads a service Sj , it also needs to delete a ser-
vice. IfRL deletes the service hosted by the space Lk, then we say
that Sj is hosted by Lk. We use Lk[r] to denote the r-th service
hosted at space Lk between the n-th arrival and the m-th arrival.
We use dk[r] to denote the time after which Lk[r] is deleted and
Lk[r + 1] is downloaded. We set dk[0] = n − 1, for all k. If
Lk[r] is the last service hosted by Lk before the m-th arrival, we
set dk[r] = m. Therefore, the service Lk[r] is hosted at the edge-
cloud between the (dk[r−1]+1)-th arrival and the dk[r]-th arrival,
for all r.

LEMMA 3. Suppose Lk[r] = Sj , then
∑dk[r]

l=dk[r−1]+1 xj [l] ≥∑dk[r]

l=dk[r−1]+1 xi[l]− 2M .

PROOF. We prove this by contradiction. By the assumption of
Lemma 1, Si /∈ RL(l), for all dk[r − 1] + 1 ≤ l ≤ dk[r]. If∑dk[r]

l=dk[r−1]+1 xj <
∑dk[r]

l=dk[r−1]+1 xi−2M , thenRLwould have
downloaded Si before the dk[r]-th arrival.

We separate all services that are in RL(l) but not in OPT (l),
for some l ∈ [n,m], into two types:

DEFINITION 6. Suppose Lk[r] = Sj /∈ OPT (n), then we say



that Sj is type I if

dk[r]∑
l=n

xj(l) ≥
dk[r]∑
l=n

xi(l)− 4M, (12)

and say that Sj is type II if there exists some τ ≥ n such that

dk[r]∑
l=τ

xj(l) ≥
dk[r]∑

l=dk[r−1]+1

xi(l). (13)

By this definition,OPT needs to forward at least
∑dk[r]
l=n xi(l)−

4M requests forLk[r] if it is type I, and at least
∑dk[r]

l=dk[r−1]+1 xi(l)

requests for Lk[r] if it is type II. It is possible for a service to
be both type I and type II. We first prove that a service Lk[r] /∈
OPT (n) is either type I or type II.

LEMMA 4. Suppose Lk[r] = Sj /∈ OPT (n), then Sj is either
type I or type II.

PROOF. If r = 1, then dk[r − 1] + 1 = n, and we have∑dk[r]
l=n xj(l) ≥

∑dk[r]
l=n xi(l) − 2M >

∑dk[r]
l=n xi(l) − 4M by

Lemma 3. In this case, Sj is type I.
Next, we consider the case r > 1. Sj is downloaded by RL

after the (dk[r − 1])-th arrival. By the design of RL, there exists a
service Sj∗ and τ such that Sj∗ ∈ RL(l), for all τ ≤ l ≤ dk[r−1],
and

dk[r−1]∑
l=τ

xj(l) ≥
dk[r−1]∑
l=τ

xj∗(l) + 2M. (14)

If τ ≥ n, then we have

dk[r]∑
l=τ

xj(l) =

dk[r−1]∑
l=τ

xj(l) +

dk[r]∑
l=dk[r−1]+1

xj(l)

≥
dk[r−1]∑
l=τ

xj∗(l) + 2M +

dk[r]∑
l=dk[r−1]+1

xi(l)− 2M

≥
dk[r]∑

l=dk[r−1]+1

xi(l),

and Sj is type II. On the other hand, if τ < n, then we have

n−1∑
l=τ

xj(l) <

n−1∑
l=τ

xj∗(l) + 2M, (15)

or Sj would have been downloaded earlier. Combining (14) and
(15) yields

∑dk[r−1]
l=n xj(l) ≥

∑dk[r−1]
l=n xj∗(l). Therefore,

dk[r]∑
l=n

xj(l) =

dk[r−1]∑
l=n

xj(l) +

dk[r]∑
l=dk[r−1]+1

xj(l)

≥
dk[r−1]∑
l=n

xj∗(l) +

dk[r]∑
l=dk[r−1]+1

xi(l)− 2M

≥
dk[r]∑

l=dk[r−1]+1

xi(l)− 4M,

and Sj is type I.

We are now ready to prove Lemma 1.

Figure 8: An example for the proof of Lemma 1.

PROOF OF LEMMA 1. LetLk1 [r1] be the type I service with the
largest dk[r]. Since OPT (l) 6= RL(l),∀dk1 [r1] + 1 ≤ l ≤ m,
we can find a set of type II services {Lk2 [r2], Lk3 [r3] . . . } such
that the union of [dkj [rj − 1]+1, dkj [rj ]] covers [dk1 [r1]+1,m].
Fig. 8 illustrates an example of finding Lk1 [r1], Lk2 [r2], . . . .

By the definition of type II service, the total number of requests
that OPT needs to forward for these services is at least

m∑
l=dk1 [r1]+1

xi(l).

Also, OPT needs to forward at least

dk1 [r1]∑
l=n

xi(l)− 4M

requests for Lk1 [r1]. Therefore, in total, OPT needs to forward at
least

∑m
l=n xi(l)− 4M requests.

B. PROOF OF LEMMA 2
PROOF OF LEMMA 2. By the first condition of RD, there are

at least 2M requests for Si between the n-th arrival and the m-
th arrival. Otherwise, Si cannot be downloaded between the n-th
arrival and the m-th arrival, and therefore cannot be deleted at the
m-th arrival.

When Si is to be deleted at the m-th arrival, it must have the
largest τi among all services currently hosted by RL, where τi is
defined in Def. 3. Since there are at least 2M requests for Si
between arrival [n,m], all services in RL(m) have at least 2M
requests between arrival [n,m].

First, consider the case RL(m − 1) 6= OPT (m − 1). There
must exist a service Sj such that Sj ∈ RL(m − 1), but Sj /∈
OPT (m− 1). OPT needs to forward all requests for Sj between
arrival [n,m], and there are at least 2M of them.

Next, consider the case RL(m − 1) = OPT (m − 1). At the
m-th arrival, RL deletes Si in order to download another service
Sj /∈ RL(m − 1) = OPT (m − 1). By the design of RL, there
exists τ and another service Si∗ ∈ RL(m − 1) such that the con-
ditions in Def. 2 are satisfied. In particular,

∑m
l=m−τ xj(l) ≥∑m

l=m−τ xi∗(l) + 2M . If m − τ ≥ n, then there are at least
2M requests for Sj between arrival [n,m], and OPT needs to
forward all of them. On the other hand, consider the case when
m−τ < n. SinceRL does not download Sj until them-th arrival,
we have

∑n−1
l=m−τ xj(l) <

∑n−1
l=m−τ xi∗(l) + 2M , and therefore∑m

l=n xj(l) ≥
∑m
l=n xi∗(l) ≥ 2M . OPT still needs to forward

at least 2M requests.


