
STORAGE SYSTEMS

FOR NON-VOLATILE MEMORY DEVICES

A Dissertation

by

XIAOJIAN WU

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

August 2011

Major Subject: Computer Engineering

STORAGE SYSTEMS

FOR NON-VOLATILE MEMORY DEVICES

A Dissertation

by

XIAOJIAN WU

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved by:

Chair of Committee, A.L.Narasimha Reddy
Committee Members, Riccardo Bettati

Serap Savari
Srinivas Shakkottai

Head of Department, Costas N. Georghiades

August 2011

Major Subject: Computer Engineering

iii

ABSTRACT

Storage Systems

for Non-volatile Memory Devices. (August 2011)

Xiaojian Wu, Ph.D., Texas A&M University

Chair of Advisory Committee: A.L.Narasimha Reddy

This dissertation presents some research work on how to use non-volatile memory

devices to build storage systems. There are many types of non-volatile memory

devices, and they usually have better performance than regular magnetic hard disks

in terms of both throughput and latency. This dissertation focuses on two of them,

NAND flash device and Phase Change Memory (PCM). This work consists of two

parts.

The first part is to design a high-performance hybrid storage system employing

Solid State Drives that are build out of NAND flash devices and Hard Disk Drives.

In this hybrid system, we propose two different policies to improve its performance.

One is to exploit the fact that the performances of Solid State Drive and Hard Disk

Drive are asymmetric and the other is to exploit concurrency on multi devices. We

implement the prototype in Linux and evaluate both policies in multiple workloads

and multiple configurations. The results show that the proposed approaches improve

the performance significantly, and adapt to different configurations of the system

under different workloads.

The second part is to implement a file system on a special class of memory devices,

Storage Class Memory (SCM), which is both byte addressable and also non-volatile,

e.g. PCM. We claim that both the existing regular file systems and the memory

based file systems are not suitable for SCM, and propose a new file system, called

SCMFS, which is implemented on the virtual address space. In SCMFS, we utilize

reddy
Highlight
novel approaches

reddy
Highlight
in building

reddy
Highlight
remove

reddy
Highlight
memory

reddy
Highlight
memory

reddy
Highlight
multiple

reddy
Highlight
prototypes

iv

the existing memory management module in the operating system to do the block

management and keep the space always contiguous for each file. The simplicity of

SCMFS not only makes it easy to implement, but also improves the performance. We

implement the prototype of SCMFS in Linux and evaluate its performance through

multiple benchmarks.

reddy
Highlight
remove

reddy
Highlight
t.

Start a new sentence. Modify the next part to:

Our design keeps address space within a file contiguous to reduce the block management software.

reddy
Highlight
a

v

To Kelsey Wu

vi

ACKNOWLEDGMENTS

Place your acknowledgment within these braces.

vii

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION . 1

A. NAND Flash . 1

B. Phase Change Memory . 3

II EXPLOIT DEVICE ASYMMETRIES IN A FLASH AND

DISK HYBRID STORAGE SYSTEM 5

A. Background . 5

B. Measurement-driven Migration 10

C. Implementation . 14

D. Evaluation . 16

1. Workload . 16

2. Benefit From Migration 18

3. Sensitivity study . 20

a. Impact of Migration Threshold Parameter δ . . . 20

b. Impact of Chunk Size 20

4. Impact of File System Metadata Placement 21

5. Comparison with 2-harddisk Device 23

III EXPLOIT CONCURRENCY IN A FLASH AND DISK HY-

BRID STORAGE SYSTEM . 28

A. Background . 28

B. Design and Implementation 31

C. Evaluation . 42

1. Testbed Details . 42

2. Workloads . 42

3. Results . 43

IV SCMFS : A FILE SYSTEM FOR STORAGE CLASS MEMORY 51

A. Background . 51

B. SCMFS . 54

1. Design . 54

a. Reuse Memory Management 55

b. Contiguous File Addresses 56

viii

CHAPTER Page

2. File System Layout 57

3. Space Pre-Allocation 59

4. Modifications to kernel 60

5. Garbage Collection . 61

6. File System Consistency 62

C. Evaluation . 63

1. Bechmarks and Testbed 63

2. IoZone Results . 64

3. Postmark Results . 68

V RELATED WORK . 71

A. Flash and SSD . 71

B. Hybrid Storage System . 71

C. Data Migration . 72

D. Non-volatile Byte-addressable Memory 74

VI CONCLUSION AND FUTURE WORK 76

A. Hybrid Storage System . 76

B. SCMFS . 77

REFERENCES . 79

VITA . 88

ix

LIST OF TABLES

TABLE Page

I Performance of different systems with Postmark workload. Through-

put is in KBytes/second. 25

II Performance of different systems with Postmark workload. Through-

put is in Bytes/second. The lower bound of the file size is 500

bytes, and the upper bound is 500,000 bytes. 26

III Numbers of operations by type in one process of different work-

loads . 41

IV Average sizes of ReadX/WriteX operations in different workloads . . 42

V Performance in a transitioning workload. 47

x

LIST OF FIGURES

FIGURE Page

1 Read, write performance of different devices 7

2 (a)Migration paths in traditional hybrid storage systems. (b)Migration

paths in space management layer. 8

3 Architecture of space management layer. 15

4 (a)Benefit from measurement-driven migration. (b)Request dis-

tribution in measurement-driven migration. 18

5 Performance impact of design parameters. (a)Impact of different

δ values. (b)Impact of different chunk Sizes. 20

6 (a)Impact of file system metadata placement on SPECsfs 3.0 using

Transcend 16G. (b)Impact of file system metadata placement on

SPECsfs 3.0 using MemoRight 32G. 21

7 (a)Hybrid drive vs. 2-harddisk striping device on SPECsfs 3.0 us-

ing Transcend 16G drive. (b)Hybrid drive vs. 2-harddisk striping

device on SPECsfs 3.0 using MemoRight 32G drive. 24

8 Hybrid drive vs. 2-harddisk striping device on IoZone. 25

9 Performance of hybrid device with static allocation ratios. Work-

load: dbench, SSD device: Intel X25-M 80GB SATA SSD, Hard

drive device:15K RPM, 73G Fujitsu SCSI disk. (a) Through-

put(higher is better), (b) Average latency(lower is better). 29

10 Handling the read requests. 38

11 Handling the write requests. 39

12 Workload: dbench, SSD device: Intel X25-M 80G SSD, Hard drive

device:15K RPM, 73G Fujitsu SCSI disk. (a) Throughput(higher

is better), (b) Average latency(lower is better), (c) IOPS(higher

is better). 44

xi

FIGURE Page

13 Workload: NetApp trace, SSD device: Intel X25-M 80G SSD,

Hard drive device:15K RPM, 73G Fujitsu SCSI disk. (a) Through-

put(higher is better), (b) Average latency(lower is better), (c)

Used time to finish the workload(lower is better). 45

14 Workload: dbench, SSD device: Intel X25-M 80GB SATA SSD,

Hard drive device: RAID0(4 15K RPM, 73G Fujitsu SCSI disks).

(a) Throughput(higher is better), (b) Average latency(lower is better). 46

15 Allocation percentage on SSD. Workload: dbench, SSD device:

Intel X25-M 80GB SATA SSD, Hard drive device: 15K RPM,

73G Fujitsu SCSI disks. 46

16 Allocation percentage on SSD. Workload: NetApp, SSD device:

Intel X25-M 80GB SATA SSD, Hard drive device: 15K RPM, 73G

Fujitsu SCSI disks. 47

17 Workload: dbench, SSD device: Memoright 32G SATA SSD, Hard

drive device:15K RPM, 73G Fujitsu SCSI disk. (a) Through-

put(higher is better), (b) Average latency(lower is better). 48

18 Workload: dbench, SSD device: Transcend 16G SATA SSD, Hard

drive device:15K RPM, 73G Fujitsu SCSI disk. (a) Through-

put(higher is better), (b) Average latency(lower is better), (c)

Average latency(lower is better). 48

19 Storage class memory . 52

20 File systems in operating systems. 54

21 Indirect block mechanism in Ext2fs 56

22 Memory space layout . 58

23 SCM file system Layout. 58

24 IoZone results(Sequential workloads) 65

25 IoZone results(Random workload) . 66

26 IoZone results with multi-thread (Random workload) 67

xii

FIGURE Page

27 IoZone results with multi-thread, using mmap (Random workload) . 68

28 Postmark results. SCMFS-1, original SCMFS. SCMFS-2, SCMFS-

1 with space pre-allocation. SCMFS-3, SCMFS-2 with file system

consistency. 70

1

CHAPTER I

INTRODUCTION

There are many kinds of non-volatile memory devices, such as EEPROM, Flash, fer-

roelectric RAM, Magnetoresistive RAM, memristor, Phase Change Memory(PCM).

This dissertation presents our research work on how to build storage systems on two

of them, NAND flash and PCM.

To build storage systems, we have several choices of the architecture layers. We

can implement it on the file system level or the block device level. Whatever layer we

implement it on, we need to consider the compatibility to the existing applications,

since the external interfaces always change much slower than the internal ones. For

example, on the block device level our system should export generic block device inter-

faces to the operating system, and on the file system level our system should behaves

as a normal directory based file system. Besides the compatibility, our main consid-

eration in this dissertation is to improve the performance, including both throughput

and latency. The reliability is also taken into consideration in the system design.

A. NAND Flash

NAND flash memory device has some special characteristics including good random

read performance, no support for “in-place” updates, and limits of erasure times.

Based on these characteristics, researchers have proposed several special file systems

for it. However these file systems are not built on the normal generic block layer

as regular file systems, and their scalability is relatively bad. These file systems

are usually used in the embedded systems. Another popular way to use NAND

flash is Solid State Drive(SSD). SSD is a type of storage device build on NAND

flash memory. Inside SSD, there is a layer called Flash Translation Layer (FTL)

reddy
Highlight
F

reddy
Highlight
M

reddy
Highlight
and Phase

reddy
Highlight
approaches

reddy
Highlight
behave

reddy
Highlight
and interoperability requires further work.

reddy
Highlight
built

reddy
Highlight
remove

reddy
Highlight
memory, with standard storage device interfaces of SCSI or IDE.

reddy
Highlight
You need to write a paragraph with a figure of the layers in the storage system to introduce this first.

You have this in your thesis defense presentation.

reddy
Highlight

reddy
Highlight
This introduction needs to be a little longer. Provide a little background on SSDs and storage stack.

2

that emulates harddisk interfaces on flash memory. Thus, users can run normal file

systems on SSDs. The functionalities such as block mapping, wear leveling, garbage

collection are implemented inside the layer FTL.

Our research work on NAND flash is to incorporate SSD into a hybrid storage

system, instead of to build systems on NAND flash directly. SSD has better perfor-

mance as well as higher price than magnetic disk. Our hybrid storage system utilizes

SSD devices to boost the storage performance. In such systems, there are two dif-

ferent straightforward approaches. One is to use SSD device as the cache of the HD

device. This approach has some disadvantages. First, using the cache mechanism,

the hot data cached in the SSD device are duplicated, and the capacity of the whole

storage system is equal to that of the HD device. However, the capacity of SSD is

too large to be ignorable. Using cache mechanism will waste the capacity. Second,

using cache mechanism, the performance of the storage system will be always worse

than that of SSD device. Actually, when most of the workload is directed to the SSD

device, the bandwidth of HD device is wasted. We should be able to improve the

throughput by balancing some workload to HD device. The other straightforward

approach is to use stripping, like that in RAID technology. Different from RAID, we

can put more hot data on SSD than HD to improve the whole performance. This

approach is not adaptive.

In this dissertation, we present a hybrid storage system and propose two ap-

proaches to improve the performance. Both approaches are measurement driven and

adaptive. In the first approach, we utilize the fact that SSD and HD devices exhibit

different performance characteristics of read and write behavior. SSD performs much

better than HD on random read while worse on random write. In this approach, we

will monitor the performance of the both devices and access patterns of data. We

use these information to migrate data between the devices. For example, we can

reddy
Highlight
You need to write a paragraph about what these are and why we need these functions.

Start with Read/write/erase --etc..

reddy
Highlight
focuses on incorporating

reddy
Highlight
With large capacities of SSDs, a better solution may enable making the combined capacity of both SSDs and disks to be made visible to the applications above, such as the file systems.

reddy
Highlight
a cache

reddy
Highlight
at best equal to the performance of the SSD devices.

reddy
Highlight
workload across the HD devices

reddy
Highlight

reddy
Highlight
Hard Disk (HD)

reddy
Highlight
i.e., to distribute data across both the devices.

reddy
Highlight
Striping can take capacity and throughput characteristics of the devices into account and allow for non-uniform data distribution.

reddy
Highlight
However, this

reddy
Highlight
remove

reddy
Highlight
remove

reddy
Highlight
 in a hybrid storage system built out of HDs and SSDs.

reddy
Highlight
this

3

move read-intensive data to SSD device and write-intensive data to HD. The other

approach exploits concurrency on multiple devices and improves both throughput and

latency simultaneously. Our experiments show that both approaches can improve the

performance significantly. We present these two approaches in Chapter II and III

respectively.

B. Phase Change Memory

As a newly emerging memory device, Phase Change Memory (PCM) interests a lot

of researchers. Since PCM has really good scalability, one usage of PCM is to build

large capacity main memory device. A lot of papers have been published on this area.

In this dissertation, we only consider how to use PCM as a persistent storage device

instead of a main memory device.

To use PCM as a persistent storage device, the most straightforward way is to use

Ramdisk to emulate a disk device on the PCM device and run the regular file systems

on it, such as Ext2Fs, Ext3Fs, etc.. In this approach, the file systems access the

storage devices through generic block layer and the emulated block I/O operations.

However, the overhead caused by the emulation and the generic block layer is not

necessary, and we can reduce it by designing a file system specially for memory

devices. When storage devices are attached to the memory bus, both the storage

device and the main memory will share system resources such as the bandwidth of

the memory bus, the CPU cache and the TLB, and the overhead of file systems will

impact the performance of the whole system. File systems for PCM should consider

these factors.

In this dissertation, we present a new file system - SCMFS, which is specifically

designed for Storage Class Memory(SCM). SCM is defined as a special class of mem-

reddy
Highlight
is generating a lot of interest among researchers.

reddy
Highlight
one possible use

reddy
Highlight
a large

reddy
Highlight
remove

reddy
Highlight
remove

reddy
Highlight
Ramdisk software

reddy
Highlight
memory

reddy
Highlight
remove

reddy
Highlight
the generic

4

ory devices that are both byte addressable and non-volatile, such as PCM. SCMFS

exports the identical interfaces as the regular file systems do, and is compatible with

all the existing applications. In this file system, we minimize the CPU overhead of file

system operations. We build SCMFS on virtual memory space and utilize the mem-

ory management unit (MMU) to map the file system address to physical addresses

on SCM. The layouts in both physical and virtual address spaces are very simple.

We also keep the space contiguous for each file in SCMFS to simplify the process of

handling read/write requests in the file system. The results based on multiple bench-

marks show that the simplicity of SCMFS makes it easy to implement and improves

the performance. We present SCMFS in Chapter IV.

reddy
Highlight
remove

reddy
Highlight
addresses

5

CHAPTER II

EXPLOIT DEVICE ASYMMETRIES IN A FLASH AND DISK HYBRID

STORAGE SYSTEM

We consider the problem of efficiently managing storage space in a hybrid storage

system employing flash and disk drives in this chapter. The flash and disk drives ex-

hibit different performance characteristics of read and write behavior. In this chapter,

we present a technique for balancing the workload properties across flash and disk

drives in such a hybrid storage system. We consider various alternatives for manag-

ing the storage space in such a hybrid system and show that the proposed technique

improves performance in diverse scenarios. This approach automatically and trans-

parently manages migration of data blocks among flash and disk drives based on their

access patterns. This work has been published in [45].

A. Background

Novel storage devices based on flash memory are becoming available with price/performance

characteristics different from traditional magnetic disks. Many manufacturers have

started building laptops with these devices. While these devices may be too expensive

(at this time) for building larger flash-only storage systems, storage systems incorpo-

rating both flash-memory based devices and magnetic disks are becoming available.

Traditionally, storage systems and file systems have been designed considering

the characteristics of magnetic disks such as the seek and rotational delays. Data

placement, retrieval, scheduling and buffer management algorithms have been de-

signed to take these characteristics into account. When both flash and magnetic disk

drives are employed in a single hybrid storage system, a number of these policies may

need to be revisited.

reddy
Highlight

6

Flash based storage devices exhibit different characteristics than magnetic disk

drives. For example, writes to flash devices can take longer than magnetic disk drives

while reads can finish faster. The flash drives have no seek and rotational latency

penalties unlike their magnetic counterparts, but have a limit on the number of times

a block can be written. Flash drives also typically have more uniform performance

(especially for reads) depending on file size, where magnetic disks typically perform

better with larger file sizes. The write performance of flash drives can experience

much larger differences in peak to average completion times due to block re-mapping

done in the Flash Translation Layer (FTL) and necessary erase cycles to free up

garbage blocks. These differences in characteristics need to be taken into account

in hybrid storage systems in efficiently managing and utilizing the available storage

space.

Fig 1 shows the time taken to read, write a data block from a disk drive and

two flash drives considered in this study. As can be seen from the data, the flash

and disk drives have different performance for reads and writes. First, flash drive

is much more efficient than the magnetic disk for small reads. While flash drive

read performance increases with the read request size, the magnetic disk performance

improves considerably faster and at larger request sizes, surpasses the performance

of the flash devices. Small writes have nearly the same performance at both the

devices. As the write request size grows, the magnetic disk provides considerably

better performance than the flash device. the disk drive is more efficient for larger

reads and writes. These characteristics are observed for a 250GB, 7200 RPM Samsung

SATA magnetic disk (SP2504C), a 16GB Transcend SSD (TS16GSSD25S-S) and a

32GB MemoRight GT flash drives. While different devices may exhibit different

performance numbers, similar trends are observed in other drives.

As can be seen from this data, requests experience different performance at

reddy
Highlight
You can put most of these 3 paragraphs in the general introduction.

You can leave it here or repeat it again here.

7

4K 8K 16K 32K 64K 128K256K512K 1M 2M 4M 8M 16M 32M 64M
0

10

20

30

40

50

60

70

80

Request size (bytes)

T
hr

ou
gh

pu
t(

M
B

/s
)

Transcend 16G Read
Transcend 16G Write
MemoRight 32G Read
MemoRight 32G Write
Harddisk Read
Harddisk Write

Fig. 1. Read, write performance of different devices

different devices based on the request type (read or write) and based on the request

size (small or large). This work is motivated at managing storage space to maximize

performance in a hybrid system that utilizes such devices together.

Various methods have been proposed to compensate and exploit diversity in

device characteristics. Most storage systems use memory for caching and manage

memory and storage devices together. Most of these approaches deal with devices

of different speeds, storing frequently or recently used data on the faster devices.

However, the flash and disk storage devices have asymmetric read/write access char-

acteristics, based on request sizes and whether the requests are reads or writes. This

asymmetry makes this problem of managing the different devices challenging and

interesting in a flash+disk hybrid system. In order to accommodate these character-

istics, in this work, we treat the flash and disk devices as peers and not as two levels

in a storage hierarchy.

Our approach is contrasted with traditional approach of a storage hierarchy in

Figure 2. In a traditional storage hierarchy, hot data is moved to the faster (smaller)

device and cold data is moved to the larger (slower) device. In our approach, the cold

8

���������	
��

�
�������	
��

�
�����
��

������
���
��

��� ���

��
���������������������� ��
������

Fig. 2. (a)Migration paths in traditional hybrid storage systems. (b)Migration paths

in space management layer.

data is still moved to the larger device. However, the hot data may be stored in either

device because of the performance asymmetry. For example, hot data that is mostly

read may be moved to the Flash device while large files that are mostly written may

be moved to the disk drive.

Flash technology is advancing rapidly and device performance characteristics

differ from manufacturer to manufacturer, from one generation to the next. This

warrants that a solution to managing the space across the devices in a hybrid system

should be adaptable to changing device characteristics.

We consider two related issues for managing space across flash and disk drives

in a hybrid system. The first issue is allocation. Where should data be allocated?

Should we first allocate data on flash before starting to use the disk drive? Should we

employ striping across the two devices until space constraints force us to do something

else? Clearly, these decisions will have implications on load on different devices, their

utilization and the performance of the storage system.

A second issue we consider is this: given a block allocation, can we adapt the

storage system to better utilize the devices in a hybrid system? We approach this

problem through data redistribution or migration of data from one device to another

device to match the data access characteristics with the device characteristics. For

example, if a data block has a higher number of reads compared to writes, it may

9

be better suited to flash device and moving it from its currently allocated disk drive

to flash drive may improve its performance. Similarly, if a file and its blocks are

sequentially written and read, it may be better located on the magnetic disk without

any loss in performance (compared to the flash device) while preserving space on the

smaller flash device for other blocks. In this chapter, we focus on the problem of data

redistribution (through migration), in storage systems built out of flash and magnetic

drives.

We propose a measurement-driven approach to migration to address these issues.

In our approach, we observe the access characteristics of individual blocks and con-

sider migrating individual blocks, if necessary, to another device whose characteristics

may better match the block access patterns. Our approach, since it is measurement

driven, can easily adapt to different devices and changing workloads or access pat-

terns.

In this chapter, we study the two related issues of allocation and data migra-

tion among the flash and disk drives to manage these diverse devices efficiently in

a hybrid system. We make the following significant contributions in this work: (a)

we propose a technique for managing data efficiently in a hybrid system through

dynamic, measurement-driven data migration between flash and disk drives, (b) we

study the impact of different allocation decisions in such a system, (c) we show that

the performance gains possible through flash devices may be strongly contingent on

the workload characteristics observed at the storage system and (d) that flexible block

management in a hybrid system is possible through a demonstration of results from

a Linux-based prototype.

10

B. Measurement-driven Migration

Our general approach is to pool the storage space across flash and disk drives and

make it appear like a single larger device to the file system and other layers above.

We manage the space across the different devices underneath, transparent to the file

system. We allow a file block on one device to be potentially moved later to another

device that better matches the access patterns of that data block. We also allow

blocks to move from one device to another device as workloads change in order to

better utilize the devices.

In order to allow blocks to be flexibly assigned to different devices, an indirection

map, containing mappings of logical to physical addresses, needs to be maintained.

Every read and write request is processed after consulting the indirection map and

determining the actual physical location of data. Similar structures have been used

by others [1, 11, 12]. In our system, as the data migrates from one device to another

device, there is a need to keep track of the re-mapping of the block addresses. When

data is migrated, the indirection map needs to be updated. This is an additional cost

of migration. We factor this cost into the design, implementation and evaluation of

our scheme. In order to reduce the costs of maintaining this map and updates to this

map, we consider migration at a unit larger than a typical page size. We consider

migration of data in chunks or blocks of size 64KB or larger.

We keep track of access behavior of a block by maintaining two counters, one

measuring the read and the other write accesses. These counters are a “soft” state of

the block i.e., the loss of this data is not critical and affects only the performance, but

not the correctness of data accesses. This state can be either maintained in memory or

on disk depending on the implementation. If memory is employed, we could maintain

a cache of recently accessed blocks for which we maintain this state, in order to limit

11

memory consumption. It is also possible to occasionally flush this data to disk to

maintain this read/write access history over longer time. In our implementation, we

maintain this information in memory through a hash table. This table is only as

large as the set of recent blocks whose access behavior we choose to remember and is

not proportional to the total number of data blocks in the system. We employ two

bytes for keeping track of read/write frequency separately per chunk (64Kbytes or

higher). This translates into an overhead of 0.003% or lower or about 32KB per 1GB

of storage. We limit the memory consumption of this data structure by de-allocating

information on older blocks periodically.

We employ the read/write access counters in determining a good location for

serving a block. A block, after receiving a configured minimum number of accesses,

can be considered for migration or relocation. This is to ensure that sufficient access

history is observed before the block is relocated. We explain below how a relocation

decision is made. If we decide to relocate or migrate the block, the read/write counters

are reset after migration in order to observe the access history since the block is

allocated on the new device.

We took a general approach to managing the device characteristics. Instead of

characterizing the devices statically, we keep track of device performance dynamically.

Every time a request is served by the device, we keep track of the request response

time at that device. We maintain both read and write performance separately since

the read, write characteristics can be substantially different as observed earlier. Dy-

namically measured performance metrics also allow us to account for load disparities

at different devices. It also allows a single technique to deal with diverse set of devices

without worrying about any configuration parameters.

Each time a request is sent to the device, a sample of the device performance is

obtained. We maintain an exponential average of the device performance by comput-

12

ing average response time = 0.99 * previous average + 0.01 * current sample. Such

an approach is used extensively in networking, in measuring round trip times and

queue lengths etc [24]. Such exponential averaging smooths out temporary spikes in

performance while allowing longer term trends to reflect in the performance measure.

For each device i, we keep track of the read ri and write wi response times. We

consider all request sizes at the device in computing this average response time to

reflect the workload at that device in our performance metric. As we direct different

types of request blocks to different devices, the workloads can be potentially different

at different devices.

Given a block j’s read/write access history through its access counters Rj and

Wj and the device response times, we use the following methodology to determine if

a block should be moved to a new location. The current average cost of accessing

this block j in its current device i, Cji= (Rj ∗ ri + Wj ∗ wi)/(Rj + Wj). The cost

of accessing a block with similar access patterns at another device k, Cjk (computed

similarly using the response times of device k) are compared. If Cji > (1+δ)∗Cjk, we

will consider this block to be a candidate for migration, where 0 < δ is a configurable

parameter. We experimented with different values of δ in this study. A larger value

for δ demands a greater performance advantage before moving a block from one device

to another device.

In general, when there are several devices which could provide better performance

to a block, a number of factors such as the load on the devices, storage space on the

devices and the cost of migration etc. can be considered for choosing one among these

devices.

Migration could be carried out in real-time while normal I/O requests are being

served and during quiescent periods when the devices are not very active. The migra-

tion decision could be made on a block by block basis or based on looking at all the

13

blocks collectively at once through optimization techniques. Individual migration and

collective optimization techniques are complementary and both could be employed in

the same system. We primarily focus on individual block migration during normal

I/O workload execution in this chapter. Later, we plan to incorporate a collective

optimization technique that could be employed, for example, once a day.

There are many considerations to be taken into account before a block is mi-

grated. The act of migration increases the load on the devices. This could affect

device performance. Hence, it is necessary to control the rate of migration. Second,

a fast migration rate, may result in moving data back and forth, causing oscillations

in workloads and performance at different devices. In order to control the rate of

migration, we employ a token scheme. The tokens are generated at a predetermined

rate. Migration is considered only when a token becomes available. In our current

implementation, we experiment with a conservative, static rate of generating tokens.

When a block is migrated from one device i to another device k, the potential

cost of this migration could be ri + wk, ri for reading the block from device i and

wk for writing the block to its new location on the device k. In order to reduce the

costs of migration, we only consider blocks that are currently being read or written

to the device, as part of normal I/O activity. For these blocks, we can avoid the cost

of reading the data from the current device location as its memory copy can be used

during the migration to the new device. Migrating non-active blocks is carried out

by a background process during quiescent periods.

Depending on the initial allocation, there may be several blocks that could benefit

from migration. A number of strategies could be employed in choosing which blocks

to migrate.

We maintain a cache of recently accessed blocks and migrate most recently and

frequently accessed blocks that could benefit from migration. When ever a migration

14

token is generated, we migrate a block from this cached list. The cached list helps in

utilizing the migration activity to benefit the most active blocks.

Migration is carried out in blocks or chunks of 64KB or larger. Larger block size

increases migration costs, reduces the size of the indirection map, can benefit from

spatial locality or similarity of access patterns. We study the impact of the block

size on the system performance. We investigate migration policies that consider the

read/write access patterns and the request sizes.

We study several allocation policies since the allocation policies could not only

affect the migration performance, but can also affect the system performance signifi-

cantly (even without migration). These policies include (a) allocation of all the data

on flash while it fits; allocating the later data on magnetic disk when flash device be-

comes full. (b) allocation of all the data on the disk drive, (c) striping of data across

both flash and disk drives; when flash device becomes full, we will allocate data only

on the magnetic device, and (d) allocation of metadata on flash; metadata typically

observes a higher request rate than normal data and it has been previously suggested

that placing the metadata on flash may be beneficial for system’s performance.

We also consider a combination of some of these policies when possible. We

consider the impact of migration along with the allocation policies in our study.

C. Implementation

We developed a Linux kernel driver that implements several policies for migration

and managing space across flash and disk drives in our system. The architecture

and several modules within the space management layer are shown in Fig. 3. The

space management layer sits below the file systems and above the device drivers. We

implemented several policies for detecting access patterns of blocks. The sequential

15

��������	�
�

���
��������
��	������

����
��������
��
��

����	��

��	����
�	���

����
�	��

�����
�	����

������	�����

����

��	�
	��

��	��������	��

����������

 ����	����

������
	��

���
��������
��	������

����!����"�

������

�����	�
����"�

������

#�����
	���������$�%��

�����

�����

�����

�����	
����
��

�����

�����������

�����������

������	
������

�����

����

����

������	
�����
��

����
��

���������	���

Fig. 3. Architecture of space management layer.

access detector identifies if blocks are being sequentially accessed by tracking the

average size of sequential access to each block. The device performance monitor keeps

track of the read/write request response times at different devices. The hot/cold data

classifier determines if a block should be considered hot. The indirection map directs

the file system level block addresses to the current location of those blocks on the

underlying flash and disk devices. The indirection map is maintained on the hard

disk, a memory copy of it allows faster operations. The block access characteristics,

in our implementation, are only maintained in memory. The block access counters

are initialized to zero, both on bootup and after a migration.

In the experimental environment, the NFS server was a commodity PC sys-

tem equipped with an Intel Pentium Dual Core 3.2GHz processor, 1GB of main

memory. The magnetic disk used in the experiments was one 7200 RPM, 250G

SAMSUNG SATA disk (SP2504C), the flash disk drives are a 16GB Transcend SSD

(TS16GSSD25S-S), and a 32GB MemoRight GT drive, which were connected to

Adaptec SCSI Card 29160 through a SATA-SCSI converter(ADSALVD160). All the

16

NFS clients are simulated by one load generator in the environment.

The operating system on the NFS server was Fedora 9 with a 2.6.21 kernel, and

the file system used was the Ext2 file system. The hybrid storage system is connected

to the server and a number of other PCs are used to access the server as clients. We

clean up the file system before each experiment (using file system mkfs command).

Device level performance is measured using processor jiffies.

The next section presents performance evaluation and comparison of different

policies.

D. Evaluation

1. Workload

We used multiple workloads for our study. The first workload, SPECsfs benchmark,

represents file system workloads. The second workload, Postmark benchmark, repre-

sents typical access patterns in an email server. We also use IoZone [25] benchmark

to create controlled workloads at the storage system in order to study the impact of

read/write request distributions on the performance of the hybrid system.

SPECsfs 3.0 is the SPEC’s benchmark for measuring NFS file server’s perfor-

mance [22]. This synthetic benchmark generates an increasing load of NFS oper-

ations against the server being evaluated and measures its response time and the

server throughput as load increases. The operations of the benchmark consists of

small metadata operations and reads and writes.

SPECsfs reports a curve of response time vs. delivered throughput (not offered

load). The system performance is measured by base response time, the slope of the

response time vs. throughput curve and its throughput saturation point. The speed of

the server and client processor, the size of file cache, and the speed of the server devices

17

determine these measured characteristics of the server [23]. We employed SPECsfs

3.0, NFS version 3 using UDP. At higher loads, the delivered throughput can decrease

as requests time out if not completed within the time limit of the benchmark (50ms).

SPECsfs is used for our evaluation because it reflects realistic workloads. It tries

to recreate a typical workload based on characterization of real traces by deriving its

operation mix from much observation of production systems [22]. This benchmark

also reflects the locality properties of real workloads, in terms of block accesses.

The SPECsfs benchmark exhibits a read write ratio of roughly 1:4 in our exper-

imental environment, i.e., for every read request, roughly 4 write requests are seen at

the storage system.

In order to study the impact of different workloads, we also employed IoZone.

IoZone is a synthetic workload generator. We employed 4 different processes to gen-

erate load. Each process can either read or write data. By changing the number

of processes reading or writing, we could control the workload read/write ratio from

100%, 75%, 50%, 25% and 0%. We employed Zipf distribution for block access to

model the locality of accesses. In this test, we also bypassed the cache to keep a

careful control of the read/write mix at the storage system.

We use Postmark [41] as a third workload. Postmark is an I/O intensive bench-

mark designed to simulate the operation of an e-mail server. The lower bound of

the file size is 500 bytes, and upper is 10,000 bytes. In our Postmark tests, we used

Postmark version 1.5 to create 40,000 files between 500 bytes and 10 kB and then per-

formed 400,000 transactions. The block size was 512 bytes, with the default operation

ratios and unbuffered I/O.

We expect these three workloads generated by SPECsfs, IoZone and Postmark to

provide insights into the hybrid system performance in typical file system workloads

and in other workloads with different read/write request distributions.

18

0 100 200 300 400 500 600
0

5

10

15

20

25

NFS Ops/sec

R
es

po
ns

e
T

im
e

(m
se

c)

 MAGNETIC−ONLY
FLASH−ONLY
STRIPING
STRIPING−MIGRATION

2000 4000 6000 8000 10000 12000 14000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

5

System Time (sec)

R
eq

ue
st

ed
 S

iz
e

(s
ec

to
r)

Read on Magnetic Disk
Read on Flash Disk
Write on Magnetic Disk
Write on Flash Disk

(a) (b)

Fig. 4. (a)Benefit from measurement-driven migration. (b)Request distribution in

measurement-driven migration.

2. Benefit From Migration

In the first experiment, we evaluate the benefit from the measurement-driven migra-

tion. We compare the performance of the following four policies:

- FLASH-ONLY: Data is allocated on the flash disk only.

- MAGNETIC-ONLY: Data is allocated on the magnetic disk only.

- STRIPING: Data is striped on both disks.

- STRIPING-MIGRATION: Data is striped on and migrated across both

disks.

The results are shown in Fig. 4(a) for Transcend flash drive. Since there are

more write requests in the workload than read requests, and write performance of

the flash disk is much worse than that of the magnetic disk, the response times for

FLASH-ONLY are longer than those for MAGNETIC-ONLY. Both these systems

utilize only one device. The performance of STRIPING is between these two systems

even though we get benefit from utilizing both the devices. The performance of the

hybrid system is again impacted by the slower write response times for the data

allocated on the flash device. Ideally, the addition of a second device should improve

19

performance (which happens with the faster MemoRight flash drive as shown later).

As can be seen from Fig. 4(a), the measurement-based migration has the through-

put saturation point at 600 NFS operations/sec, that is much better than 426 NFS op-

erations/sec in the STRIPING policy, and 434 NFS operations/sec in the MAGNETIC-

ONLY policy. This improvement benefits from the data redistribution which matches

the read/write characteristics of blocks to the device performance.

Fig. 4(b) shows the request distribution in different system periods. At the first,

beginning at 2000 seconds, the number of the write requests directed to the magnetic

disk and to the flash disk are quite close. However, over time, more and more write-

intensive data are migrated to the magnetic disk, resulting in more write requests at

the magnetic disk. For example, in Fig. 4(b), at the system time between 12000 and

14000 seconds, there are 433343 sectors written to the magnetic disk while only 79043

sectors are written to the flash disk (i.e. nearly 5.5 times as many sectors are written

to disk compared to flash), while the read request sizes to the devices are close to

each other at 69011 and 59390 sectors respectively. This request pattern at the end of

the simulation shows that our approach is succeeding in redistributing write-intensive

blocks to the magnetic disk even though the initial allocation of blocks distributes

these blocks equally on the two devices.

This experiment shows that the measurement-driven migration can effectively

redistribute the data to the right devices and help decrease the response time while

improving the throughput saturation point of the system.

20

0 100 200 300 400 500 600 700
1

2

3

4

5

6

7

8

9

10

NFS Ops/sec

R
es

po
ns

e
T

im
e

(m
se

c)

δ = 0.0

δ = 0.5

δ = 1.0

δ = 1.5

0 100 200 300 400 500 600 700
1

2

3

4

5

6

7

8

9

NFS Ops/sec

R
es

po
ns

e
T

im
e

(m
se

c)

Chunk size − 64K
Chunk size − 128K
Chunk size − 256K

(a) (b)

Fig. 5. Performance impact of design parameters. (a)Impact of different δ values.

(b)Impact of different chunk Sizes.

3. Sensitivity study

a. Impact of Migration Threshold Parameter δ

As explained earlier, δ is a configurable parameter, that controls how much perfor-

mance advantage is expected (after migration) for the accesses to the block that is

being migrated. In this experiment, we evaluated the impact of using different δ

values. Generally, the smaller the δ, the higher the probability that the chunk will

be migrated. As a result, too small a value of δ can cause higher migration. On the

other hand, if the value is too large, the efficiency of the migration can be weakened

as the data can not be remapped to the right device. Based on the results from the

experiment shown in Fig. 5(a), the value δ = 1 is chosen for the rest of the tests.

b. Impact of Chunk Size

Fig. 5(b) shows the impact of using the different chunk sizes. Chunk sizes of 64KB

and 128KB had nearly the same performance at various loads while a larger chunk

size of 256KB showed worse performance. In all the following experiments, we used

the chunk size of 64KB.

21

0 100 200 300 400 500 600 700 800
0

2

4

6

8

10

12

14

16

NFS Ops/sec

R
es

po
ns

e
T

im
e

(m
se

c)

STRIPING
STRIPING−METAONFLASH
STRIPING−MIGRATION
STRIPING−MIG−METAONFLASH

0 200 400 600 800 1000 1200 1400
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

NFS Ops/sec

R
es

po
ns

e
T

im
e

(m
se

c)

STRIPING
STRIPING−METAONFLASH
STRIPING−MIGRATION
STRIPING−MIG−METAONFLASH

(a) (b)

Fig. 6. (a)Impact of file system metadata placement on SPECsfs 3.0 using Transcend

16G. (b)Impact of file system metadata placement on SPECsfs 3.0 using Mem-

oRight 32G.

4. Impact of File System Metadata Placement

Previous research states that on the magnetic disk, file system metadata placement

and access efficiency is important for the overall performance [27, 28, 38]. Since

flash disk has faster read speed, many researchers believe that it is better to store

the file system metadata on the flash device. In this experiment, we evaluate the

impact of the file system metadata placement policy, especially the effect of storing

the metadata on the flash device only. In order to conduct this experiment, we relied

on file system information that is generally not available at the device level. The

metadata blocks are written by the ext2 file system at the time of file system creation

and hence they occupy addresses at the beginning of the device. We give this range

of block addresses special consideration to conduct this experiment. We restrict the

blocks within this address range to be placed on flash for this experiment and also

study the impact of not allowing these blocks to be migrated between flash and disk.

In this experiment, a new mechanism for dealing with the file system metadata is

provided to the STRIPING and STRIPING-MIGRATION policies. All the file system

22

metadata are mapped to the flash disk and this metadata region is not considered

for migration. STRIPING-METAONFLASH shows the results of the system when

metadata is placed on the flash disk and no migration takes place and STRIPING-

MIG-METAONFLASH shows the results of the system where metadata is fixed on

the flash disk while normal data is allowed to migrate. We compare these two new

systems with the two earlier systems STRIPING (with no migration) and STRIPING-

MIGRATION (where data and metadata are both striped and allowed to migrate).

The test results for Transcend flash drive are shown in Fig. 6(a) and the MemoRight

drive in Fig. 6(b).

For the Transcend drive, fixing the file system metadata on the flash disk did not

give any improvement to the performance. Instead, the response time of the whole

system has increased significantly. Meanwhile, the throughput saturation point was

also greatly decreased. The phenomenon is caused by the abundant write requests

to the file system metadata in the workload. Even though the reading response time

reduced, the writing response time was increased significantly. As a result, the total

performance was not improved. This is primarily because of the very slow write

performance of the Transcend flash drive.

For the MemoRight drive, fixing metadata on the flash drive is shown to improve

the performance of the system by about 10-15%. The faster write performance of

this flash drive clearly improved the performance compared to the system with the

Transcend drive.

The results from these experiments with different flash devices highlight a number

of points. First, the allocation policies of the hybrid system will depend on the

individual drives as seen by the fact that performance improved in one system and

worsened in another system when metadata is fixed on the flash drive. However,

migration successfully improved performance in both systems with different flash

23

devices. Moreover, in both the systems, migration improved performance irrespective

of initial allocation of data (whether metadata was fixed on the flash drive or not).

This points to the flexibility gained through measurement-based migration policy.

These results also point to the need for faster write performance on flash devices for

hybrid systems to be more effective.

5. Comparison with 2-harddisk Device

In this experiment, we compared the performances of the hybrid storage system and

a 2-hard disk striping storage system (data is striped on two hard disks and no

migration is employed). First, we used SPECsfs 3.0 to generate the workload.

Fig. 7(b) shows the comparison of the MemoRight-based hybrid system against

the 2-disk system. It is observed that the hybrid system outperforms the 2-harddisk

striping storage system, achieving nearly 50% higher throughput saturation point.

The hybrid storage system delivers higher performance, fulfilling the motivation for

designing such a system.

Fig. 7(a) shows the comparison of the Transcend-based hybrid system against

the 2-disk system. It is observed that the 2-harddisk striping storage system works

better than the hybrid drive on both the saturation point and the response time.

We used IoZone to generate workloads with different read/write ratio to find

out what kind of workloads are more suitable for the hybrid storage system. In this

experiment, we employed four processes to generate workload at the storage system.

By varying the number of processes doing reads vs. writes, we could create workloads

that 100% writes, to 75%, 50%, 25% or 0% write workloads (0R4W, 1R3W, 2R2W,

3R1W and 4R0W). We employed a Zipf distribution for data accesses in each process

and bypassed the cache to maintain a controlled workload at the storage system.

The results are shown in Fig. 8. Each workload name consists of <number of

24

0 100 200 300 400 500 600 700 800
0

1

2

3

4

5

6

7

8

NFS Ops/sec

R
es

po
ns

e
T

im
e

(m
se

c)

2−Harddisk Striping
Hybrid Drive

0 200 400 600 800 1000 1200
1

2

3

4

5

6

7

NFS Ops/sec

R
es

po
ns

e
T

im
e

(m
se

c)

2−Harddisk Striping
Hybrid Drive

(a) (b)

Fig. 7. (a)Hybrid drive vs. 2-harddisk striping device on SPECsfs 3.0 using Transcend

16G drive. (b)Hybrid drive vs. 2-harddisk striping device on SPECsfs 3.0 using

MemoRight 32G drive.

reading processes R number of writing processes W>. Each process reads from or

writes to a 512MB file according to a Zipf distribution. We adjusted the number of

processes to control the ratio of read/write requests to the device. To bypass the buffer

cache, we used direct I/O. While the 2-harddisk system did not employ migration, we

tested the hybrid system with two policies STRIPING and STRIPING-MIGRATION.

As we can see from Fig. 8, the performance of Transcend-based hybrid drive

with STRIPING policy is not as good as that of the 2-harddisk system, especially

the writing performance. However, with migration employed, the performance of the

hybrid drive achieved significant improvement, even surpassed the 2-harddisk system.

The results show that the hybrid drive with migration can get higher performance

improvement when the ratio of read/write requests is higher, even with the slower

Transcend flash drive. When the ratio was 1:3 (in workload 1R3W), the perfor-

mances of 2-harddisk system and hybrid drive with STRIPING-MIGRATION policy

are almost the same.

These results indicate that read/write characteristics of the workload have a crit-

ical impact on the hybrid system. With migration, the hybrid system’s performance

25

4R0W 3R1W 2R2W 1R3W 0R4W
0

500

1000

1500

2000

2500

3000

3500

T
hr

ou
gh

pu
t (

K
B

/s
ec

)

STRIPING Read
2−HARDDISK STRIPING Read
STRIPING−MIGRATION Read
STRIPING Write
2−HARDDISK STRIPING Write
STRIPING−MIGRATION Write

Fig. 8. Hybrid drive vs. 2-harddisk striping device on IoZone.

can be improved greatly and made to offer a performance improvement over a 2-disk

system over much wider workload characteristics than it would have been possible.

The results with Postmark benchmark experiment are shown in Table I. In our

experiment we employed two simultaneous processes to generate sufficient concur-

rency, both processes running the Postmark benchmark with default parameters. We

ran our experiments across both the hybrid storage systems with Transcend and Mem-

oRight flash drives and on the 2-disk system. It is observed that migration improved

the transaction rate, read/write throughputs in both the hybrid storage systems, by

about 10%. It is also observed that the Transcend-based hybrid system could not

compete with the 2-hard disk system. However, the MemoRight-based hybrid system

could outperform the 2-hard disk system, by roughly about 10-17%.

Process 1 Process 2
Transactions Read Write Transactions Read Write

/sec Throughput Throughput /sec Throughput Throughput
Transcend-Hybrid(Striping) 52 211.46 49.22 50 204.70 47.65
Transcend-Hybrid(Migration) 58 237.18 55.21 57 229.68 53.46
MemoRight-Hybrid(Striping) 126 509.17 118.52 125 502.98 117.08
MemoRight-Hybrid(Migration) 137 553.17 128.76 134 538.76 125.41

2-Harddisk 121 487.77 113.54 115 462.86 107.74

Table I. Performance of different systems with Postmark workload. Throughput is in

KBytes/second.

26

Process 1 Process 2
Transactions Read Write Transactions Read Write

/sec Throughput Throughput /sec Throughput Throughput
Transcend-Hybrid (Striping) 17 3.19M 434.88K 17 3.19M 434.69K

Transcend-Hybrid (Migration-1) 18 3.35M 449.43K 17 3.33M 449.75K
Transcend-Hybrid (Migration-2) 19 3.47M 461.86K 18 3.45M 460.23K
MemoRight-Hybrid (Striping) 25 5.39M 610.72K 25 5.33M 602.92K

MemoRight-Hybrid (Migration-1) 26 5.69M 644.48K 26 5.67M 642.35K
MemoRight-Hybrid (Migration-2) 33 5.91M 740.05K 30 6.38M 722.17K

2-Harddisk 24 5.15M 583.10K 24 5.13M 580.32K

Table II. Performance of different systems with Postmark workload. Throughput is in

Bytes/second. The lower bound of the file size is 500 bytes, and the upper

bound is 500,000 bytes.

We conducted a second experiment with Postmark benchmark to study the im-

pact of request size. In this experiment again, we employed two simultaneous Post-

mark processes. The file size was varied from a low of 500 bytes to 500 Kbytes, with

each process generating and accessing 4,000 files. Each process conducts 80,000 total

transactions in this experiment. The results of these experiment are shown in Table II.

We employed two migration policies. In policy labeled Migration-1, only read/write

characteristics were considered as earlier. In the second policy labeled Migration-2,

request size was considered as detected by our sequentiality detector module. If the

observed request size is less than one migration block (64KB in this experiment), we

allowed the block to be migrated based on the read/write request patterns of that

block. If the request size is observed to be larger, we allowed this data to exploit

the gain that can be had from striping data across both the devices. If the block is

accessed as part of a request larger than 64KB, it is not migrated.

The results of these two policies are shown in Table II. It is observed that mi-

gration policy based on read/write patterns improved the performance over striping.

When we considered the request sizes and the read/write access patterns (Migration-

2), the performance is observed to be higher. While the performance improved by

about 7% for MemoRight based hybrid storage system when read/write patterns

are considered, the performance on an average improved by about 20% when both

27

read/write patterns and the request size are considered. The performance for Tran-

scend based storage system also improves in both the policies, the performance im-

provement is not as substantial. These experiments show that both read/write and

request size patterns can be exploited to improve performance.

28

CHAPTER III

EXPLOIT CONCURRENCY IN A FLASH AND DISK HYBRID STORAGE

SYSTEM

In this chapter, we propose another approach to improve the performance of hybrid

storage system employing solid state disks and hard disk drives. We utilize both initial

block allocation as well as migration to reach “Wardrop equilibrium”, in which the

response times of different devices equalize. We show that such a policy allows adap-

tive load balancing across devices of different performance. We also show that such

a policy exploits parallelism in the storage system effectively to improve throughput

and latency simultaneously. This work has been published in [46].

A. Background

Traditionally, memory systems and storage systems employ a hierarchy to exploit the

locality of data accesses. In such systems, data is cached and accessed from the faster

devices while the slower devices provide data to the faster devices when data access

results in a miss at the faster devices. Data is moved between the different layers of

the storage hierarchy based on the data access characteristics.

Employing faster devices as caches generally improves performance while hiding

the complexity of handling the diversity of multiple devices with different charac-

teristics to the upper layers. However, caching generally results only in realizing

the capacity of the larger (and slower) devices since the capacity of the faster (and

smaller) devices is not exposed to the upper layers.

When the capacity of the devices at different layers can be comparable, it is

possible to employ other organizations to realize the combined capacity of the devices.

Migration is one of the techniques employed in such situations. In such systems, the

29

0 20 40 60 80 100
150

200

250

300

350

400

450

500

550

600

650

Percentage on SSD device (%)

T
hr

ou
gh

pu
t (

M
B

yt
e/

se
c)

2 Processes
6 Processes
10 Processes

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Percentage on SSD device (%)

A
ve

ra
ge

 la
te

nc
y

(m
se

c)

2 Processes
6 Processes
10 Processes

(a) (b)

Fig. 9. Performance of hybrid device with static allocation ratios. Workload: dbench,

SSD device: Intel X25-M 80GB SATA SSD, Hard drive device:15K RPM, 73G

Fujitsu SCSI disk. (a) Throughput(higher is better), (b) Average latency(lower

is better).

frequently or recently accessed data is stored on (or migrated to) the faster devices

to improve performance while realizing the combined capacity of the devices. Even

when migration is employed, the storage system can still be organized as a hierarchy

with faster devices at higher layers being accessed first on any data access.

When the storage system is organized as a hierarchy (either with caching or

migration), the data throughput can be limited by the rate at which data can be

accessed from the faster device (even when all the data is accessed from the faster

devices). The throughput is limited by the fact that the faster device(s) has to be

accessed on every access. However, it is possible to provide higher throughput if data

can be accessed directly from all the devices without enforcing a strict hierarchy. In

such a system, it is possible to provide throughput higher than what can be provided

by a strictly hierarchical system.

We explore this option, in this chapter, in organizing SSDs and magnetic disks

in a hybrid system. This is driven partly by the fact that while the small read (or

30

random read) performance of SSDs can be significantly higher than magnetic disks,

the large read/write access performance of SSDs is comparable to magnetic disks and

random write performance of SSDs can be sometimes worse than that of magnetic

disks, depending on the choice of SSDs and magnetic disks. Second, depending on

the prices of storage on different devices, systems will be designed with different

amounts of storage on SSDs and magnetic disks. We are motivated to design a

storage organization that works well across many different organizations with various

levels of SSD storage in a hybrid storage system.

Other systems have explored the organization of storage systems in a non-

hierarchical fashion, for example [1]. The data can be stored in either type (faster

or slower) device and accessed in parallel in such systems. For example, on a miss,

read data may be directly returned from the slower device while making a copy in

the faster device, in the background, for future references. Similarly, on a write miss,

the writes may be directly written to the slower device without moving data to the

faster device. However, most such systems employ faster devices until their capacity

is exhausted before they start moving data to the slower devices. In the system, we

explore here, the capacity of the faster device may not be completely utilized, before

data is allocated on the slower devices and used in parallel with the faster devices.

Our approach tries to improve both the average latency and throughput of data ac-

cess simultaneously by exploiting the parallelism that is possible through accessing

multiple devices concurrently.

When data is striped across multiple devices, data can be accessed in parallel

from all the devices, potentially making use of all the devices in the system. How-

ever, striping allocates data uniformly across all the devices without regard to the

relative performance of the devices. In the approach we adopt here, the data is dis-

tributed differently across the different devices based on the observed performance of

31

the devices and thus tries to match load across the devices to dynamically observed

performance of the devices.

In Chapter II, we present a measurement-driven approach to exploit the perfor-

mance asymmetry in such a hybrid storage system. In this approach, we observe the

access characteristics of individual extents and consider migrating individual extents,

if necessary, to another device whose characteristics may better match the block access

patterns. This approach is self adaptive. In earlier SSDs, read performance was supe-

rior to hard drives, while write performance was inferior. In such systems, matching

read dominant requests to SSDs and write dominant requests to hard drives improved

performance. However current SSDs have better performance than hard drives for

both read and write. Such policies will not work any longer when the SSD device

performs beyond the hard drive on both read and write operations.

In order to accommodate the diversity of the devices (both SSDs and magnetic

disks) and the continuous evolution of the SSD architectures and characteristics, we

employ a completely performance-driven approach to this problem. We measure the

performance of the devices for various requests and use the measured characteristics

to drive our data organization across the multiple devices in the hybrid storage sys-

tem. Our approach hence adjusts to the workloads and the configuration of number

of different devices in the system. We will show through results, based on two work-

loads and multiple configurations of storage systems, that our approach improves

performance, compared to a strict-hierarchical approach.

B. Design and Implementation

Our design is motivated by the results shown in Fig. 9. We consider a system with

one Intel SSD 2.5 inch X25-M 80GB SATA SSD and one 15K RPM, 73G Fujitsu SCSI

32

disk. We ran a workload of dbench benchmark [47] on a storage system employing

these two devices in various configurations. We consider a system where all the data

is stored entirely on the SSD and different levels of allocation across the two devices.

For example, in a system employing an 80/20 allocation, 80% of the data is allocated

on the SSD and 20% of the data is allocated on the hard disk. The benchmark we

consider is small enough such that the entire dataset can fit on the SSD. Hence, the

results shown in Fig. 9 exclude the overheads of managing the data across the two

devices in various configurations. It is seen that the performance is not necessarily

maximized by allocating all the data on the faster device, in this case the Intel SSD.

The dbench benchmark uses throughput as a performance measure and through-

put, in this case, is clearly improved when the data is stored across both the devices,

enabling both the devices to be used in parallel. We also measured the average la-

tency of all the NFS operations in the benchmark. It is observed that the throughput

and latency of the system continues to improve as more and more data is allocated

on the SSD, until 100% of the data is allocated on SSD, for the two workloads of 2

and 6 processes. However, with 10 processes, the throughput is maximized at about

80% allocation (on SSD) and latency is minimized at about 70% allocation.

The results in Fig. 9 also clearly show the impact of a strict hierarchical access

of data. As we increase the number of processes, the SSD performance peaked at

about 620MB/s and at higher number of processes, organizations that employ both

SSD and disk in parallel can do better. This is an important observation that leads

to our design below. When the amount of parallelism in the request stream is low, a

hierarchical design works well. However, as the amount of parallelism increases in the

request stream, the requests can be better served by exploiting multiple devices, even

at the cost of employing slower devices in serving some of the requests. The reduction

in waiting times to serve requests can contribute to improvement in performance.

33

It is emphasized that our experiment here employed static allocations of different

percentages across the devices to study the feasibility of doing better than a strict

hierarchical system and our results do not include the costs of managing the data

across the two devices (in all configurations). However, these results point to the

potential of exploiting the parallelism in the storage system through concurrent data

access from multiple devices.

These results motivate the work in this chapter. We design a system that can

utilize all the devices in the hybrid storage system irrespective of the number of

devices in the storage system. This system automatically adjusts the allocation to

different types of devices to improve the performance of the whole system. The

allocation percentages are automatically adjusted based on the number of different

types of devices in the system. We implement a Linux prototype employing our

ideas. We show through trace-driven evaluation of our system, that our system can

improve throughput and latency of data access simultaneously compared to a strictly

hierarchical system.

The architecture of the prototype is same as that in previous chapter (Fig. 3).

We also take a block level approach so that the solution can work with any file system

above. Measuring device level performance at the file system is made difficult due to

page cache buffering and read ahead policies of the operating system.

The space management layer provides an indirection mapping between the phys-

ical device addresses employed by the file system and the actual physical blocks on

the device where data is written. It maintains a block map of where a given block is

located on which device. We manage space in extents of 128K bytes. For each logical

extent, we use one bit to indicate the underlying device and store a physical extent

number where this extent can be found on the device. The overhead introduced by

the mapping table is low. For example, for a system whose capacity is 1T bytes, the

34

size of the full mapping table is (1T/128K) ∗ ⌈(log2 (1T/128K) ∗ 2 + 1)/8⌉ = 48M

bytes, and the overhead is about 0.0046%. The space management layer also allo-

cates new blocks. The allocation ratios and the migration rates from one device to

another are controlled by the observed performance of the devices, always preferring

the devices with faster performance. The device performance monitor in this layer

keeps track of the request response times at different devices. And the hot/cold data

classifier determines if a block should be considered hot. The cold data will only be

migrated in the background.

The space management layer may allocate blocks on magnetic disks even before

the space on the SSDs is completely allocated, depending on the observed performance

of the SSDs relative to the magnetic disks.

This architecture supports flexible policy configuration. In this work, we propose

a new policy that only considers the aggregate response time as a performance metric

and uses allocation as the main vehicle to balance the workload. As we will show, this

policy can improve both throughput and latency even when the SSD device performs

beyond the HDD device on both read as well as write operations. In the rest of this

section, we describe the details of the policy.

Our basic approach is driven by a goal of trying to reach “Wardrop equilibrium”.

When the devices in the system are at a Wardrop equilibrium, the average response

time for a data item cannot be improved by moving that data item alone from its

current device to another device. Typically, Wardrop equilibrium can be reached

when the response times of different devices equalize. Such an approach is employed

in road transportation problems and in multi-path routing in networks [48, 19]. In

order to equalize the response times of devices, we may have to subject the devices

to different loads.

In this work, we consider device performance in making initial storage alloca-

35

tions as well as migration of blocks after they are allocated. It is emphasized that

these allocations can span across all the devices before the faster device’s capacity is

filled. In the current system, whenever a new block is written to the storage system,

the storage system dynamically decides where to store that block of data based on

observed performance of the devices. A space management layer keeps track of the

location of the different blocks across the devices in the storage system, providing

a mapping of file system logical block addresses to physical block addresses in the

storage system. In order to keep this space management layer efficient, data is man-

aged in “extents”, different from file system blocks. An extent, typically, consists of

multiple file system blocks.

This allocation policy tends to allocate more blocks on better performing devices

and exploits slower devices as the faster devices get loaded with increasing request

rates. As a result of this dynamic performance-driven approach, initially the data

is allocated on the faster devices, SSD in our system. As the waiting times increase

at the SSDs, the performance of a data access gets worse and at some point in

time, data can be potentially accessed faster at an idle magnetic disk. When that

happens, data is allocated on the magnetic disk as well, thus allowing parallelism to

be exploited in serving requests. The details of this allocation policy are explained

below, including how performance is measured, how allocation is shifted based on

observed performance etc.

Blocks of data are migrated from one device to another based on several consid-

erations. Cold data is moved to the larger, slower devices in the background, during

idle times of the devices. Hot data could also be migrated when the loads on the

devices are imbalanced or current device is not providing as good a performance to

this block of data as it is likely to receive at another device. Migration happens

asynchronous to the arriving request stream so that the delays in migration do not

36

affect the request completion time. In order to ensure that migration of data doesn’t

impact the performance of the foreground user requests, we give migration requests

lower priority than the current user requests. Migration can take three forms in our

system. First, cold data is migrated, in the background, from faster device to larger

devices to make room on the smaller, faster devices. Second, hot data is migrated

to lighter-loaded devices, in the background, to even out performance of the devices.

Third, data is migrated on writes, when writes are targeted to the heavier-loaded

device and the memory cache has all the blocks of the extent to which the write

blocks belong (explained further below). To distinguish hot data from cold data, we

maintain a LRU list of accessed blocks whose length is limited. Only the blocks in

the list are considered to be migrated. In the implementation, this is the same LRU

list used in the write-through cache .

Among the two options of adjusting load across the devices, allocation is simpler

than migration. Data can be allocated on the currently fastest device or least-lightly

loaded device. As a result of an allocation decision, we impact only one device.

Migration impacts two devices, the device where the data currently resides and the

new device where the data is migrated to. Ideally, data is moved from the most heavily

loaded device to the least lightly loaded device. We make use of both the mechanisms

to balance load and to exploit parallelism in the system. We employ migration when

the current allocation rate is not expected to be sufficient to balance the load and

when the smaller device starts filling up. In the first case, hot blocks are migrated

from higher-loaded devices to lighter-loaded devices and in the second case, data is

migrated from devices that are filling up to the devices that still have unfilled capacity

37

(and when there is a choice among these devices, to the lighter-loaded device).

R̄ = Rs ×Qs +Rh ×Qh

Ps = Qs + α[R̄−Rs]×Qs

Ph = Qh + α[R̄−Rh]×Qh

TokenNumbers = |Ps −Qs| × β

Direction =


HD− > SSD, if Ps > Qs;

SSD− > HD, else;

(3.1)

We use a timer routine to track the performance of each device and the actual per-

centage of workload on each device. This routine also use this information to calculate

the number of load-balancing tokens and the migration direction as specified in equa-

tion (3.1). We explain our mechanism in relation to two devices SSD and HD here

to make things easier to understand. In equation (3.1), Rs and Rh are measured

response times on both devices, Qs and Qh are measured workload distribution on

each device, Ps and Ph are the target distribution we want to reach in the next round,

and α and β are design parameters. If the measured response time of the device is

worse(better) than the average response time in the system, the workload on that

device is reduced (increased). In order to ensure that the performance of the de-

vices can be measured, the allocations are lower bounded for each device (i.e., they

can’t be zero). We maintain an exponential average of the device performance by

computing average response time = 0.99 previous average + 0.01 current sample.

Such an approach is used extensively in networking, in measuring round trip times

and queue lengths etc. Such exponential averaging smooths out temporary spikes in

performance while allowing longer term trends to reflect in the performance measure.

The load-balancing tokens are consumed by both allocation and migration. The

number of tokens control the rate at which the load is adjusted across the devices. As

38

explained earlier, allocation is a preferred mechanism for achieving our equilibrium

goals. The load balancing tokens are used first by the allocation process. Depending

on the values in the equations above, the allocation is slowly tilted towards the lighter-

loaded device. The migration thread will only do migration when the load-balancing

tokens are not completely consumed by the allocation process (for example, because

there are no new writes). When a write request to new data arrives, the new data will

be allocated to lighter-loaded device and consume one token if there is any. If there

is no token available, the new data will be allocated according to the distribution

Ps/Ph. A natural question that may come to mind is what happens to our system

Read from cache

and return

Hits the cache? Yes

No

Issue a new

request to read the

whole extent (RWE)

and return

read request arrives

Update the cache

Complete the

original read

request

RWE completed

Fig. 10. Handling the read requests.

when the storage system is completely filled once. How does an allocation policy help

in managing the load across the storage system? SSDs employ a copy-on-write policy

because of the need for erasing the blocks before a write. In order for SSDs to carry

out the erase operations efficiently, it is necessary for SSDs to know which blocks can

be potentially erased (ahead of time, in the background) such that sufficient number of

free blocks are always available for writing data efficiently. To accommodate this need,

TRIM ATA command has been developed [49]. This command allows a file system

to communicate to the storage system which of the blocks on the storage system are

not live blocks in the file system. We exploit this new command in developing our

system.

39

Map the requested

extent to the lighter-

loaded device

Mapped? No

write request arrives

Any available

migration

token?

Yes

Map the

requested extent

to underlying

device according

to Ps/Ph

No

Redirect the request to

the mapped device and

return

Hits the cache?

Update the cache

No

Any available migration

token and mapped to the

heavier-loaded device?
No

Remap the requested

extent to the lighter-

loaded device

Yes

Issue a write request to

flush the whole extent

(WWE) and return

Yes

Decrease the token

number by 1

Decrease the token

number by 1

Yes

Complete the

original write

request

WWE completed

Fig. 11. Handling the write requests.

When TRIM commands are issued, the storage system can keep track of avail-

able free space on different devices and continue to employ allocation decisions in

guiding its policy of balancing load and performance of different devices. A write to a

logical block that is previously allocated and “trimmed” can be considered as a new

allocation. With such an approach, allocation can continue being a useful vehicle for

balancing load across the devices until the system is completely full.

In addition to the performance-driven migration and performance-driven alloca-

tion decisions as explained above, we also employ a number of techniques to improve

performance. These include caching of entire extents in memory even if only a few

of the blocks in the extent are read. This full-extent caching is expected to help dur-

ing migration of blocks. Without such full-block caching, a hot block that requires

migration from one device to another device may require several operations: reading

of remaining blocks from the older device, merging of recently written/accessed data

40

with the older blocks and migration of the entire extent of blocks to the new device.

When the entire extent is read and cached, migration requires only the last operation

since all the blocks of the extent are currently in memory.

We implement the cache as a write-through cache with pre-fetch mechanism as

shown in Fig. 10 and 11. When a read request arrives, if it hits the cache, it will

be read from the cache and returned immediately. Otherwise, a new request (RWE)

is issued to fetch the whole extent that contains the requested data. When this

request is completed, the whole extent will be inserted into the cache and the original

read request is returned to the user process. When a write request arrives, if the

requested address is not mapped (i.e, write to a new extent), the requested address

will be mapped to an underlying device. If there is any migration token waiting,

it will be mapped to the lighter-loaded device, otherwise, the request is allocated

according to the targeted distribution Ps/Ph in equation 3.1. If the requested address

is mapped and the request misses in the cache, it will be redirected to the mapped

device according to the mapping table. If the request hits in the cache and the

requested address is mapped to the heavier-loaded device, the request extent might

be re-mapped to the lighter-loaded device when there is an available token. We only

need to flush the updated cache to the new mapped device to complete the migration

from the old mapped device. As described above, the cache is write-through, which

prevents any data loss during exceptions such as power failure. It is noted that caching

here refers to memory caching and not caching in SSD.

We employ a cache of 100 recently read extents in memory. This cache is em-

ployed in all the configurations in this work to keep the comparisons fair.

We compare our system against two other systems, one in which the capacity

on the SSD is allocated first and a second system that stripes data across the two

devices. The first system employs caching at SSD when the capacity of the SSD

41

is exhausted. In the current system, the allocation across the devices is driven by

dynamic performance metrics in the system and is not decided ahead of time.

Table III. Numbers of operations by type in one process of different workloads

dbench NetApp Traces

NTCreateX 3390740 46614

Close 2490718 46610

Rename 143586 145

Unlink 684762 29

Deltree 86 0

Mkdir 43 0

Qpathinfo 3073335 99896

Qfileinfo 538596 22506

Qfsinfo 563566 37255

Sfileinfo 276214 50527

Find 1188248 34393

WriteX 1690616 47626

ReadX 5315377 43044

LockX 11042 0

UnlockX 11042 0

Flush 237654 118

42

Table IV. Average sizes of ReadX/WriteX operations in different workloads

dbench NetApp Trace

Average ReadX size (bytes) 11853 18105

Average WriteX size (bytes) 25720 6204

C. Evaluation

1. Testbed Details

In the experimental environment, the test machine is a commodity PC system equipped

with a 2.33GHz Intel Core2 Quad Processor Q8200, 1GB of main memory. The

magnetic disks used in the experiments are 15K RPM, 73G Fujitsu SCSI disks

(MBA3073NP), the flash disk is one Intel SSD 2.5 inch X25-M 80GB SATA SSD

(SSDSA2MH080G1GC). The operating system used is Fedora 9 with a 2.6.28 kernel,

and the file system used is the Ext2 file system. We clean up the file system before

each experiment. To show our policy’s adaptivity, we also conduct some experiments

on other two SSDs, one 16GB Transcend SSD (TS16GSSD25S-S), and one 32GB

MemoRight GT drive.

2. Workloads

Dbench [47] is a file system benchmark using a single program to simulate the work-

load of the commercial benchmark Netbench. This benchmark reports both the la-

tency of each NFS operation and the total throughput as metrics. To evaluate our

policy extensively, we also use dbench to replay some traces from real world. The real

traces are obtained from an engineering department at NetApp [50]. We developed

a tool to translate the NetApp traces into the format that dbench can use. The tool

43

generates two dbench trace files from each NetApp trace file. One of them is only used

to initialize the file system image, the other one contains the exact same operation

sequence as that in the original trace file. The workload is replicated under different

directories as we increase the number of processes such that each process replays a

workload of the original trace, different and independent of other processes.

The characteristics of request sizes and read/write ratios for the two workloads

are shown in Table III and IV. As seen from the table, the NetApp trace has smaller

read/write ratio and smaller write request sizes.

In all the experiments, we take the design parameters δ = 10/ms and β = 100.

3. Results

Results of our experiments on a storage system with one SSD and one magnetic

disk (called 1SSD+1HD configuration here) in a workload of dbench benchmark are

shown in Fig. 12. Each experiment was run 5 times and the averages are shown.

The 95% confidence bars are computed for all simulations, but not necessarily shown

in the figure, to make it easier to read the data. The figures show a comparison of

throughput (MB/s and IOPS/s) and latency across four systems, entirely running

on the SSD, entirely running on the HD, on a hybrid system employing our policy

and on a hybrid system employing a static allocation mix of 80/20 on SSD/HD (as

identified earlier to be a good static configuration in Fig. 9). The two configurations

70/30 and 80/20 perform similarly and we use the 80/20 configuration as an example.

It is observed that our policy does nearly as well as or better than the 80/20 static

configuration and achieves higher throughput than the SSD or HD alone at higher

number of processes. This shows that our policy dynamically adapts the allocation

rate to individual devices and the workload to achieve good performance.

Results of our experiments on the storage system with 1SSD+1HD configuration

44

2 4 6 8 10 12 14 16 18 20
100

200

300

400

500

600

700

Process number

T
hr

ou
gh

pu
t(

M
B

yt
e/

se
c)

HD(with cache)
SSD(with cache)
1SSD+1HD(80/20 striping)
1SSD+1HD(our policy)

2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Process number

A
ve

ra
ge

 la
te

nc
y(

m
se

c)

HD(with cache)
SSD(with cache)
1SSD+1HD(80/20 striping)
1SSD+1HD(our policy)

2 4 6 8 10 12 14 16 18 20
2

3

4

5

6

7

8

9

10

11

12
x 10

4

Process number

IO
P

S

HD(with cache)
SSD(with cache)
1SSD+1HD(80/20 striping)
1SSD+1HD(our policy)

(a) (b) (c)

Fig. 12. Workload: dbench, SSD device: Intel X25-M 80G SSD, Hard drive device:15K

RPM, 73G Fujitsu SCSI disk. (a) Throughput(higher is better), (b) Average

latency(lower is better), (c) IOPS(higher is better).

in a workload derived from the NetApp traces are shown in Fig. 13. The figures show

various performance measures as the number of processes is increased in the workload.

It is observed that as the number of processes is increased, the allocation-based policy

achieves higher throughput than when the data is entirely stored on the SSD or when

the data is striped across the two devices (SSD and hard disk). The allocation-

based policy achieves nearly 38% more throughput than the SSD and nearly 16%

more throughput than a striping configuration, with 10 requesting processes. The

NetApp workload has more write requests than read requests and the write requests

are smaller. Both these characteristics contribute to the fact that for this workload,the

throughput performance of magnetic disk drive is better than that compared to the

SSD.

Fig. 13(b) shows the average latency time for I/O requests. It is observed that

the allocation-based policy simultaneously improves latency along with throughput.

The allocation-based policy achieves nearly 28% better latency than the SSD and 17%

better latency than the striping configuration, with 10 requesting processes. This is

primarily due to the simultaneous use of both the devices and the appropriately

45

proportional use of the devices based on their performance.

1 2 3 4 5 6 7 8 9 10
10

15

20

25

30

35

Process number

T
hr

ou
gh

pu
t (

M
by

te
/s

ec
)

HD
SSD
Striping (1HD+1SSD)
Our Policy (1HD+1SSD)

1 2 3 4 5 6 7 8 9 10
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Process number

La
te

nc
y

(m
s)

HDD
SSD
Striping (1HD+1SSD)
Our policy (1HD+1SSD)

1 2 3 4 5 6 7 8 9 10
50

100

150

200

250

300

350

400

450

Process number

T
im

e
to

 fi
ni

sh
 th

e
tr

ac
e

(S
ec

on
ds

)

HD
SSD
Striping (1HD+1SSD)
Our policy (1HD+1SSD)

(a) (b) (c)

Fig. 13. Workload: NetApp trace, SSD device: Intel X25-M 80G SSD, Hard drive de-

vice:15K RPM, 73G Fujitsu SCSI disk. (a) Throughput(higher is better), (b)

Average latency(lower is better), (c) Used time to finish the workload(lower

is better).

As seen from the two workloads above, the allocation-based policy works well

across two different workloads.

Below, we show that the proposed allocation-based policy works well in different

configurations. We create additional configurations, 1SSD+2HD (1 Intel SSD and 2

Fujitsu magnetic disks) and 1SSD+4HD (1 Intel SSD and 4 Fujitsu magnetic disks).

We study the performance of all the previously considered policies now in these new

configurations. For the data on HD alone policy, we use the magnetic disks in a

RAID0 configuration (striping with no parity protection). The results with dbench

workload are shown in Fig. 14. To make the figures clearer, we only plot the re-

sult of 1SSD+4HD. The performance of 1SSD+2HD is between those of 1SSD+1HD

and 1SSD+4HD. It is observed that our allocation policy improves performance in

the new 1SSD+4HD configuration, from 1SSD+1HD configuration. This increase in

performance comes from increased use of magnetic disks in supporting the workload.

The performance of our policy is better than striping data across all the five devices

(1SSD and 4 HDs) as shown in the figure. It has been already shown earlier that our

46

policy achieves better performance than when all the data resides on the single SSD.

The data in Fig. 14(a) compares our policy with striping data on the four disks or

when data is statically distributed in a 80/20 ratio across the SSDs and the four disks

(the static allocation ratio that is found to work well earlier in the 1+1 configuration).

The results show that our policy outperforms these other alternative options.

2 4 6 8 10 12 14 16 18 20
300

400

500

600

700

750

Process number

T
hr

ou
gh

pu
t(

M
B

yt
e/

se
c)

4HD(RAID0)
SSD(with cache)
1SSD+4HD(80/20 striping)
1SSD+4HD(our policy)

2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Process number

La
te

nc
y

(m
s)

4HD(RAID0)
SSD(with cache)
1SSD+4HD(80/20 striping)
1SSD+4HD(our policy)

(a) (b)

Fig. 14. Workload: dbench, SSD device: Intel X25-M 80GB SATA SSD, Hard drive

device: RAID0(4 15K RPM, 73G Fujitsu SCSI disks). (a) Throughput(higher

is better), (b) Average latency(lower is better).

2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

70

80

90

100

Process number

A
llo

ca
tio

n
P

er
ce

nt
ag

e
on

 S
S

D
 (

%
)

1SSD+1HD
1SSD+4HD

Fig. 15. Allocation percentage on SSD. Workload: dbench, SSD device: Intel X25-M

80GB SATA SSD, Hard drive device: 15K RPM, 73G Fujitsu SCSI disks.

47

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

Process number

A
llo

ca
tio

n
P

er
ce

nt
ag

e
on

 S
S

D
 (

%
)

1SSD+1HD

Fig. 16. Allocation percentage on SSD. Workload: NetApp, SSD device: Intel X25-M

80GB SATA SSD, Hard drive device: 15K RPM, 73G Fujitsu SCSI disks.

Table V. Performance in a transitioning workload.

Throughput Average Percentage

(Mbytes/sec) Latency(ms) on SSD

1 proc. 10 proc. 1 proc. 10 proc. 1 proc. 10 proc.

HD 12.3106 25.9799 0.200 0.894 0% 0%

SSD 12.413 23.6754 0.199 0.933 100% 100%

1SSD+1HD(our policy) 11.5769 36.8594 0.214 0.613 65.25% 55.08%

The allocation percentages across the devices in these experiments, with the

dbench workload, are shown in Fig. 15. First, we observe that our policy allocates

about 65-70% of data on the SSD in the 1+1 configuration. This allocation per-

centage is close to one of the better configurations, 70/30, identified earlier through

static allocation. We can also see that more data is allocated to magnetic disks in the

1SSD+4HD configuration than in the 1+1 configuration. Our policy adopts alloca-

tions to the availability of more disks in the new configuration and allocates smaller

amount of data to SSDs.

48

2 4 6 8 10 12 14 16 18 20
0

50

100

150

200

250

300

350

400

450

500

Process number

T
hr

ou
gh

pu
t(

M
B

yt
e/

se
c

HD
SSD
1SSD+1HD(30/70 striping)
1SSD+1HD(our policy)

2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

Process number

A
ve

ra
ge

 la
te

nc
y(

m
se

c)

HD
SSD
1SSD+1HD(30/70 striping)
1SSD+1HD(our policy)

(a) (b)

Fig. 17. Workload: dbench, SSD device: Memoright 32G SATA SSD, Hard drive de-

vice:15K RPM, 73G Fujitsu SCSI disk. (a) Throughput(higher is better), (b)

Average latency(lower is better).

2 4 6 8 10 12 14 16 18 20
0

50

100

150

200

250

Process number

T
hr

ou
gh

pu
t(

M
B

yt
e/

se
c)

HD
SSD
1SSD+1HD(5/95 striping)
1SSD+1HD(our policy)

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

20

Process number

A
ve

ra
ge

 la
te

nc
y(

m
se

c)

HD
SSD
1SSD+1HD(5/95 striping)
1SSD+1HD(our policy)

2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Process number

A
ve

ra
ge

 la
te

nc
y(

m
se

c)

HD
1SSD+1HD(5/95 striping)
1SSD+1HD(our policy)

(a) (b) (c)

Fig. 18. Workload: dbench, SSD device: Transcend 16G SATA SSD, Hard drive de-

vice:15K RPM, 73G Fujitsu SCSI disk. (a) Throughput(higher is better), (b)

Average latency(lower is better), (c) Average latency(lower is better).

49

We also present the allocation percentages across SSD and HD for the NetApp

workload in Fig. 16. It is observed that our policy distributes about 50% of the data

to SSD and 50% of the data to the hard disk in this workload. As noticed earlier, the

hard disk performs better in this workload than in the dbench workload. This is the

reason more data is allocated to hard disk in this workload.

As the number of processes increases, in both workloads, the allocation per-

centage is shifted slightly more towards hard disk compared to the distribution at

lower number of processes. With higher number of processes, more devices can be

exploited, even if they are slower, to improve throughput. It is observed that the

allocation percentage is slightly more than 50% on the hard disk, at higher number

of processes, in the NetApp workload, as seen in Fig. 16. This is consistent with

the higher performance of the hard disk compared to SSD in this workload, at higher

concurrency, as seen earlier in Fig. 13a.

As an additional experiment, we ran an experiment where the workload initially

consisted of one process of NetApp workload and halfway during the experiment, the

workload transitioned into a load of 10 processes. The results of the experiment are

shown in Table V. It is observed that our policy transitions the allocation to suit the

changing workload and provides good performance across both the workloads.

To show our policy’s adaptivity further, we ran experiments on two other SSDs

and the results are shown in Fig. 17 and 18. In these experiments, SSDs perform worse

than hard drives due to their bad write performance. Similar to earlier experiments,

we compare our policy to SSD only policy, hard drive only policy, and also the best

case of static allocation. Our experiments show that even with the configuration where

hard drive performs beyond SSD device, we still can get benefits from concurrency

through our policy. Fig. 17 and 18 show that our policy adapts allocation/load across

the two devices to improve performance in a dbench workload. Our policy matches

50

the best static allocation for each configuration.

As can be seen from the data, our policy adapts to different workloads and the

configuration of the storage system to improve performance. The gains in performance

are more significant with higher concurrency in the request stream of the workload.

51

CHAPTER IV

SCMFS : A FILE SYSTEM FOR STORAGE CLASS MEMORY

In this chapter, we present a new file system, called SCMFS, which is designed for

Storage Class Memory (SCM). SCM is special class of memory device that are byte

addressable as well as non-volatile. In SCMFS, we utilize the existing memory man-

agement module in the operating system to do the block management and keep the

space always contiguous for each file. The simplicity of SCMFS not only makes it

easy to implement, but also improves the performance.

A. Background

In this chapter, we focus on non-volatile memory which can be attached directly to the

memory bus and is also byte addressable. Such nonvolatile memory can be used in the

computer system for the main memory as well as for persistent storage of files. The

promising nonvolatile memory technologies include Phase Change Memory(PCM)[59,

71, 70], memristor[61], and they offer low latencies that are comparable to DRAM

and are orders of magnitude faster than traditional disks.

The emerging and developing of nonvolatile memory technologies bring many new

opportunities for researchers. The emerging nonvolatile memory can be attached to

memory bus, thus reducing the latencies to access persistent storage. These devices

also enable processor to access persistent storage through memory load/store instruc-

tions enabling simpler and faster techniques for storing persistent data. However,

compared to disk drives, these devices usually have much shorter write life cycles. A

lot of work has been done on how to reduce write operations to and how to implement

wear leveling on such devices [65, 68, 67, 69]. Since SCM’s write endurance is usually

100-1000X+ order of NAND flash, the lifetime issues are expected to be less problem-

52

CPU RAM

Storage Class Memory

Disk/SSD

Memory Storage

Fig. 19. Storage class memory

atic. In this chapter, we investigate how the characteristics of SCM devices should

impact the design of file systems. SCM devices have very low access latency, which is

much better than the existing other persistent storage devices and we consider them

attached to the memory bus directly (as shown in Fig.19).

To use SCM as a persistent storage device, the most straightforward way is to

use Ramdisk to emulate a disk device on the SCM device. Then it becomes possible

to use a regular file system, such as Ext2Fs, Ext3Fs, etc.. The traditional file systems

assume the underlying storage devices are I/O-bus attached block devices, and are not

designed for memory devices. In this approach, the file systems access the storage

devices through generic block layer and the emulated block I/O operations. The

overhead caused by the emulation and the generic block layer is not necessary, since a

file system specially designed for memory devices can be built on top of the memory

access interface directly. In the traditional storage hierarchy, the additional overhead

is ignorable since the latency to access storage devices is much higher than that to

access memory. When the storage device is attached directly to the memory bus

and can be accessed at memory speeds, these overheads can substantially impact

performance and hence it is necessary to pay attention to avoid such overheads when

ever possible. In addition, when storage devices are attached to the memory bus,

both the storage device and the main memory will share system resources such as

53

the bandwidth of the memory bus, the CPU cache and the TLB. In this case, the

overhead of file systems will impact the performance of the whole system, and file

systems for SCM should consider these factors. In our file system, we will eliminate

unnecessary overheads in the hierarchy.

Another choice is to modify the existing memory based file systems, such as

tmpfs [63], ramfs. These file systems are designed to use main memory to store the

files, and are not for persistent storage devices. So, these file systems do not harden

any data on persistent devices to let the system restore the data from rebooting. All

the metadata are maintained by the in-memory data structures, and the file data are

stored in the temporarily allocated memory blocks. It is not harder to design a new

file system from scratch than to adapt these file systems to SCM devices.

In this chapter, we propose a new file system - SCMFS, which is specifically

designed for SCM. With consideration of compatibility, this file system exports the

identical interfaces as the regular file systems do, in order that all the existing appli-

cations can work on it. In this file system, we aim to minimize the CPU overhead of

file system operations. We build our file system on virtual memory space and utilize

the memory management unit (MMU) to map the file system address to physical

addresses on SCM. The layouts in both physical and virtual address spaces are very

simple. We also keep the space contiguous for each file in SCMFS to simplify the

process of handling read/write requests in the file system. We will show, through

results based on multiple benchmarks, that the simplicity of SCMFS makes it easy

to implement and improves the performance.

54

Applications

Memory File

Systems(ramfs, tmpfs)
SCMFS

Regular File

Systems(Ext2, Ext3,…)

nvmalloc(),nvfree(), …

Memory Management

RAM Storage Class Memory DISK/SSD

Generic Block Layer

Memory Storage

Fig. 20. File systems in operating systems.

B. SCMFS

In this section, we present the design of SCMFS and a prototype implementation on

Linux 2.6.33 kernel.

1. Design

In this work, we aim to design a file system for SCM devices. With traditional

persistent storage devices, the overhead brought by I/O latency is much higher than

that of file system layer itself. So the storage system performance usually depends on

the devices’ characteristics and the performance of I/O scheduler. However, in the

case that storage device is directly attached to the memory bus, the storage device

will share some critical system resources with the main memory. They will share the

bandwidth of the memory bus, the CPU caches and TLBs for both instruction and

data. We believe that the lower complexity of the file system can reduce the CPU

overhead in the storage system and then improve the total performance. Our design

is motivated by the need to minimize the number of operations required to carry out

file system requests, in such a system.

55

a. Reuse Memory Management

Current file systems spend considerable complexity due to space management. For

example, Ext2fs spends almost 2000 SLOCs (source lines of code) on it. Since SCM

will be visible through memory bus, it is possible to reuse the memory management

module within the operating system to carry out these functions. Memory man-

agement has hardware support in the form of TLB and MMU caches to speed up

operations of translating from virtual addresses to physical addresses, providing pro-

tection mechanisms across users etc. It seems natural to exploit this infrastructure

to speed up file system operations as well when storage will be accessible through

memory bus. SCMFS is designed to reuse the memory management infrastructure,

both in the hardware and the Operating System. It is expected that such a design

would benefit from the future enhancements to memory management infrastructure

within the processor, through increased TLB sizes and MMU caches.

In our design, we assume the storage device, SCM, is directly attached to CPU,

and there is a way for firmware/software to distinguish SCM from the other volatile

memories. This assumption allows the file systems be able to access the data on SCM

in the same way as normal RAM. With this assumption, we can utilize the existing

memory management module in the operating system to manage the space on the

storage class memory. As shown in Fig. 20, regular file systems are built on top of

the generic block layer, while SCMFS is on top of the modified memory management

module.

When the file system relies on the MMU for mapping virtual addresses to physical

addresses, these mappings need to be persistent across reboots in order to access the

data after a power failure, for example. It is not sufficient to allocate the page mapping

table on the SCM since these mappings can be cached at various locations before being

56

Inode

information

Direct

blocks

Indirect

blocks

Double indirect

blocks

… ...

Fig. 21. Indirect block mechanism in Ext2fs

written to memory. We need to immediately harden the address mappings whenever

space is allocated on SCM. We made enhancements to the kernel for this purpose, as

explained later in Section IV.4.

b. Contiguous File Addresses

Current file systems employ a number of data structures to manage and keep track of

the space allocated to a file. The file systems have to deal with the situation that a

large file is split into several parts and stored in separate locations on the block device.

For example, Ext2fs handles this by using indirect blocks, as shown in Fig. 21. This

makes the process of handling the read/write requests much more complicated, and

sometimes requires extra read operations of the indirect blocks.

In order to simplify these data structures, we designe the file system such that

the logical address space is contiguous within each file. To achieve this, we build the

file system on virtual address space, which can be larger than the physical address

space of the SCM. We can use page mapping to keep all the blocks within a file

to have contiguous logical addresses. In SCMFS, with the contiguity inside each

file, we do not need complicated data structures to keep track of logical address

57

space, and simply store the start address and the size for each file. This mechanism

significantly simplifies the process of the read/write requests. To get the location of

the request data, the only calculation is adding the offset to the start address of the

file. The actual physical location of the data is available through the page mapping

data structures, again leveraging the system infrastructure.

As described above, putting the file system on virtual address space can simplify

the design and reduce overheads. However, it also has a side affect that it may

cause more TLB misses. Operating systems sometimes map the whole memory in

the system to a linear address space using a larger page size (e.g., 2MB), resulting

in smaller number of TLB misses. In our current implementation, to minimize the

internal fragmentation we use a page size of 4K bytes. Hence, we may incur more

TLB misses than if we were to employ linear mapping of the virtual address space

corresponding to the file system. We will see its impacts in Section IV.C.

2. File System Layout

Fig. 22 shows the layout of both virtual memory space and physical memory space

in SCMFS. The “metadata” in physical memory space contains the information of

storage, such as size of physical SCM, size of mapping table, etc. The second part of

the physical memory is the memory mapping table. The file system needs this infor-

mation when mounted to build some in-memory data structures, which are mostly

maintained by memory management module during runtime. Any modification to

these data structures will be flushed back into this region immediately. Since the

mapping information is very critical to the file system consistency, all the updates to

this region will be flushed immediately by using the procedure “clflush cache range”

described in Section IV.6. The rest of the physical space is mapped into virtual

memory space and used to store the whole file system.

58

Super block Inode table Files

Metadata
Memory mapping

table
File system space

Physical memory space

Virtual memory space

Fig. 22. Memory space layout

ro
o

t … ...

super block

inode table

… ...

virtual_size

mapped_size

file_size

virtual_size

mapped_size

file_size

directory file ordinary file

virtual_size

mapped_size

null file

dir1 file1 file2

inode number

Fig. 23. SCM file system Layout.

In the virtual memory space, the layout of SCMFS is very simple and similar to

existing file systems, and it consists of three parts. The first part is the super block,

which contains the information about the whole filesystem, such as file system magic

number, version number, block size, counters for inodes and blocks, the total number

of inodes and blocks, etc.. The second part is the inode table, which contains the

fundamental information of each file or directory, such as file mode, file name, owner

id, group id, file size in bytes, the last time the file was accessed (atime), the last time

the file was modified (mtime), the time the file was created (ctime), start address of

the data for the file, etc.. The first item in the inode table is the root inode that is

always a directory. All the content of the files in the file system are stored in the

third part. In our prototype, the total size of virtual memory space for SCMFS is

247 bytes (range: ffff000000000000 - ffff7fffffffffff), which is unused in original Linux

59

kernel.

The structure of SCM file system is illustrated in Fig.23. In SCM file system,

directory files are stored as ordinary files, except that their contents are lists of inode

numbers. Besides ordinary files and directory files, in SCMFS, there is an additional

type of file, a null file, which will be described in Section IV.3. There is also a pointer

to the start address of inode table in the super block. In the inode table, we use a

fixed size of entry, which is 256 bytes, for each inode and it is very easy to get a file’s

metadata through its inode number and the start address of the inode table.

With the layouts, the file system can be easily recovered or restored after re-

booting. First we check if the “metadata” is valid through a signature, and use the

information in the “metadata” and “mapping table” to build the mapping between

the physical addresses and the virtual addresses. Once we finish this, we can get the

information about the file system from the super block in the virtual address space. It

is noted that both the physical and the virtual address in the mapping table need to

be relative instead of absolute to provide the portability between different machines

and systems.

3. Space Pre-Allocation

In traditional file systems, all the data blocks are allocated on demand. The space is

allocated to the files only when needed, and once any file is removed, the space allo-

cated for it will be deallocated immediately. Frequent allocation and deallocation can

invoke many memory management functions and can potentially reduce performance.

To avoid this, we adopt a space pre-allocation mechanism, in which we create and al-

ways maintain certain amount of null files within the file system. These null files have

no name, no data, however have already been allocated some physical space. When

we need to create a new file, we always try to find a null file first. When a file shrinks,

60

we will not de-allocate the unused space. And when we need to delete an existing

file, we will not de-allocate its space but mark it as a null file. Through the space

pre-allocation mechanism, we can reduce the number of allocation and deallocation

operations significantly, and expect to boost the file system performance.

To support this mechanism, we need to maintain three “size”s for each file. The

first one, “file size” , is the actual size of the file. The second one, “virtual size” is

the size of the virtual space allocated to the file. The last one, “mapped size”, is

the size of mapped virtual space for the file, which is also the size of physical space

allocated to the file. The value of “virtual size” is always larger than or equal to that

of “mapped size”, whose value is always larger than or equal to that of “file size”.

The space unused but mapped for each file is reserved for later data allocations,

and potentially improves the performance of further writing performance. However,

these spaces are also likely to be wasted. To recycle these “wasted” spaces, we use a

background process. This method is very similar to the garbage collection mechanism

for flash based file systems. This background thread will deallocate the unused but

mapped spaces for the files when the utilization of the SCM reaches a programmable

threshold, and it always chooses cold files first.

4. Modifications to kernel

In our prototype, we make some modifications to original Linux kernel 2.6.33 to

support our functionalities. First, we modify the E820 table, which is generated by

BIOS to report the memory map to the operating system[78]. We add a new address

range type “AddressRangeStorage”. This type of address range should only contain

memory that is used to store non-volatile data. By definition, the operating system

can use this type of address range as storage device only. This modification makes

sure the operating system has the ability to distinguish SCM from normal memory

61

device.

Second, we add a new memory zone “ZONE STORAGE” into the kernel. A

memory zone in Linux is composed of page frames or physical pages, and a page

frame is allocated from a particular memory zone. There are three memory zones in

original Linux: ZONE DMA is used for DMA pages, “ZONE NORMAL” is used for

normal pages , and “ZONE HIGHMEM” is used for those addresses that can not be

contained in the virtual address space(32bit platform only). We put all the address

range with type “AddressRangeStorage” into the new zone “ZONE STORAGE”.

Third, we add a set of memory allocation/deallocation functions, nvmalloc()/nvfree(),

which allocate/deallocate memory from the zone “ZONE STORAGE”. The function

nvmalloc() derives from vmalloc(), and allocates memory which is contiguous in ker-

nel virtual memory space, while not necessary to be contiguous in physical memory

space. The function nvmalloc() has three input parameters: size is the size of virtual

space to reserve, mapped size is the size of virtual space to map, write through is used

to specify if the cache policy for the allocated space is write-through or write-back.

We also have some other functions, such as nvmalloc expand() and nvmalloc shrink(),

whose parameters are same as that of nvmalloc(). The function nvmalloc expand()

is used when the file size increases and the mapped space is not enough, and nvmal-

loc shrink() is used to recycle the allocated but unused space.

All the modifications involve less than 300 lines of source code in kernel.

5. Garbage Collection

As described above, the mechanism of pre-allocation is used to improve the speed

of appending data to files. However it causes the waste of space since we may pre-

allocate some space for the files ever appended later. To recycle the wasted space, we

provide a garbage collection mechanism. Using a garbage collection in a file system

62

is normal, especially for the flash file systems. To minimize its impact on the system

performance, we implement this mechanism in a background kernel thread. When

the unmapped space on the SCM is lower than a threshold, this background will try

to free the unnecessary space, that is mapped but not used. During the garbage

collection, it will check the number of null files first. If the number exceeds a pre-

defined threshold, it will free the extra null files. If we need to free more, this thread

will consider the cold files first, that have not been modified for a long time, then the

hot files. We can easily classify the cold/hot file through the last modified time. This

thread also takes the responsibility of creating null files when there are too few null

files in the system.

Even though our current system doesn’t implement any wear leveling functions,

we expect to incorporate wear leveling into a background process that can work with

the garbage collection thread.

6. File System Consistency

File system consistency is always a big issue in file system design. As a memory based

file system, SCMFS has a new issue: unsure write ordering. The write ordering prob-

lem is caused by CPU caches that stand between CPUs and memories [64]. Caches

are designed to reduce the average access latency to memories. To make the access

latency as close to that of the cache, the cache policy tries to keep the most recently

accessed data in the cache. The data in the cache is flushed back into the memory

according to the designed data replacement algorithm. And the order in which data is

flushed back to the memory is not necessarily the same as the order data was written

into cache. Another reason that causes unsure write ordering is out-of-order execution

of the instructions in the modern processors. To address the problem of unsure write

ordering, we can use a combination of the instructions MFENCE and CLFLUSH.

63

This combination has been implemented with the function “clflush cache range” and

used in the original Linux kernel. The instruction MFENCE is used to serialize all

the load/store instructions that are issued prior to the MFENCE instruction, which

guarantees that every load/store instruction that precedes, in program order, the

MFENCE instruction is globally visible before any load or store instruction that fol-

lows the MFENCE instruction becomes globally visible. The instruction CLFLUSH

is used to invalidate the cache line that contains the specified address from all levels

of the processor cache hierarchy. By using the function “clflush cache range”, we can

provide the ensured write order to any range of addresses.

In SCMFS, we always use the function “clflush cache range” when we need to

modify the critical information, including “metadata”, “superblock”, “inode table”

and “directory files”. This simple mechanism will provide metadata consistency. As

to the data consistency, we flush the CPU cache periodically. This provides similar

guarantees as the existing regular file systems.

C. Evaluation

To evaluate our ideas, we implement a prototype of SCMFS in Linux. This prototype

consists of about 2700 source lines of code, which is only 1/10 of that of ext2fs in

Linux. In this section, we present the results by using some standard benchmarks.

1. Bechmarks and Testbed

To evaluate SCMFS thoroughly, we use multiple benchmarks. The first benchmark,

IoZone [25], is a synthetic workload generator. This benchmark creates a large file,

and issues different kinds of read/write requests on this file. Since the file is only

opened once in each test, we use the benchmark IoZone to evaluate the performance

64

of accessing file data. The second benchmark, postmark [41] is an I/O intensive

benchmark designed to simulate the operation of an e-mail server. This benchmark

creates a lot of small files and performs read/write operations on them. We use this

benchmark to evaluate SCMFS’s performance on small files and metadata.

In the experimental environment, the test machine is a commodity PC system

equipped with a 2.33GHz Intel Core2 Quad Processor Q8200, 8GB of main memory.

We configure 4GB of the memory as the type “AddressRangeStorage”, and use it as

Storage Class Memory. The operating system used is Fedora 9 with a 2.6.33 kernel.

In all the benchmarks, we compare the performance of SCMFS to that of other

existing file systems, including ramfs, tmpfs and ext2fs. Since ext2fs is designed for a

traditional storage device, we run ext2fs on ramdisk, which emulates a disk drive by

using the normal RAM in main memory. It is noted that ramfs, tmpfs and ramdisk

are not designed for persistent memory, and none of them can be used on storage

class memory directly.

2. IoZone Results

Using IoZone, we evaluate the sequential and random performance, and the results are

shown in the Fig.24(a,b) and Fig.25(a,b) respectively. We also use the performance

counters in the modern processors, through the PAPI library [60], to see the detailed

performance information related to CPU’s functional units, including L1/L2 cache

miss rate, Data/Instruction TLB misses. We show this information in the rest of

Fig.24 and Fig.25.

In these figures, we can see that the performances of all the file systems decreases

dramatically when the record length is more than 1 megabytes. This is because that

when record length is too large, L2 cache miss rate and Data TLB misses increases

significantly, as shown in the Fig.24(g,h,i,j) and Fig.25(g,h,i,j).

65

 4k 8k 16k 32k 64k 128k 256k 512k 1m 2m 4m 8m 16m
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

6

Record length (bytes)

T
hr

ou
gh

pu
t (

kb
yt

es
/s

ec
)

Sequential Read Performance

ScmFs
TmpFs
RamFs
Ext2fs on Ramdisk

 4k 8k 16k 32k 64k 128k 256k 512k 1m 2m 4m 8m 16m
0

0.5

1

1.5

2

2.5
x 10

6

Record length (bytes)

T
hr

ou
gh

pu
t (

kb
yt

es
/s

ec
)

Sequential Write Performance

ScmFs
TmpFs
RamFs
Ext2fs on Ramdisk

 4k 8k 16k 32k 64k 128k 256k 512k 1m 2m 4m 8m 16m
0

0.005

0.01

0.015

0.02

0.025

0.03

Record length (bytes)

M
is

s
R

at
e

L1 Instruction Cache Miss Rate(Sequential Read Workload)

ScmFs
TmpFs
RamFs
Ext2fs on Ramdisk

 4k 8k 16k 32k 64k 128k 256k 512k 1m 2m 4m 8m 16m
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Record length (bytes)

M
is

s
R

at
e

L1 Instruction Cache Miss Rate(Sequential Write Workload)

ScmFs
TmpFs
RamFs
Ext2fs on Ramdisk

(a) (b) (c) (d)

 4k 8k 16k 32k 64k 128k 256k 512k 1m 2m 4m 8m 16m
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Record length (bytes)

M
is

s
R

at
e

L1 Data Cache Miss Rate(Sequential Read Workload)

ScmFs
TmpFs
RamFs
Ext2fs on Ramdisk

 4k 8k 16k 32k 64k 128k 256k 512k 1m 2m 4m 8m 16m
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Record length (bytes)

M
is

s
R

at
e

L1 Data Cache Miss Rate(Sequential Write Workload)

ScmFs
TmpFs
RamFs
Ext2fs on Ramdisk

 4k 8k 16k 32k 64k 128k 256k 512k 1m 2m 4m 8m 16m
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Record length (bytes)

M
is

s
R

at
e

L2 Data Cache Miss Rate(Sequential Read Workload)

ScmFs
TmpFs
RamFs
Ext2fs on Ramdisk

 4k 8k 16k 32k 64k 128k 256k 512k 1m 2m 4m 8m 16m
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Record length (bytes)

M
is

s
R

at
e

L2 Data Cache Miss Rate(Sequential Write Workload)

ScmFs
TmpFs
RamFs
Ext2fs on Ramdisk

(e) (f) (g) (h)

 4k 8k 16k 32k 64k 128k 256k 512k 1m 2m 4m 8m 16m
0

0.5

1

1.5

2

2.5

3
x 10

5

Record length (bytes)

M
is

se
s

Data TLB Misses(Sequential Read Workload)

ScmFs
TmpFs
RamFs
Ext2fs on Ramdisk

 4k 8k 16k 32k 64k 128k 256k 512k 1m 2m 4m 8m 16m
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

Record length (bytes)

M
is

se
s

Data TLB Misses(Sequential Write Workload)

ScmFs
TmpFs
RamFs
Ext2fs on Ramdisk

 4k 8k 16k 32k 64k 128k 256k 512k 1m 2m 4m 8m 16m
0

10

20

30

40

50

60

70

80

Record length (bytes)

M
is

se
s

Instruction TLB Misses(Sequential Read Workload)

ScmFs
TmpFs
RamFs
Ext2fs on Ramdisk

 4k 8k 16k 32k 64k 128k 256k 512k 1m 2m 4m 8m 16m
0

0.5

1

1.5

2

2.5

3
x 10

4

Record length (bytes)

M
is

se
s

Instruction TLB Misses(Sequential Write Workload)

ScmFs
TmpFs
RamFs
Ext2fs on Ramdisk

(i) (j) (k) (l)

Fig. 24. IoZone results(Sequential workloads)

We notice that the memory based file systems, including RamFs, TmpFs and

SCMFS, performs generally much better than Ext2Fs on Ramdisk. The reason is that

Ext2 file system is created on the generic block layer and has much higher complexity

than the memory based file systems, as we describe in Section IV.B. Simplicity of the

hierarchy significantly decreases the size of instruction set. As shown in Fig.24(c,d,k,l)

and Fig.25(c,d,k,l), memory based file systems had much lower instruction cache miss

rate and instruction TLB misses than Ext2 file system.

We also notice that in the random/sequential write workload, Ext2 file system

performs better than SCMFS when the record length was between 64k and 512k

66

 4k 8k 16k 32k 64k 128k 256k 512k 1m 2m 4m 8m 16m
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

6

Record length (bytes)

T
hr

ou
gh

pu
t (

kb
yt

es
/s

ec
)

Random Read Performance

ScmFs
TmpFs
RamFs
Ext2fs on Ramdisk

 4k 8k 16k 32k 64k 128k 256k 512k 1m 2m 4m 8m 16m
0

0.5

1

1.5

2

2.5

3
x 10

6

Record length (bytes)

T
hr

ou
gh

pu
t (

kb
yt

es
/s

ec
)

Random Write Performance

ScmFs
TmpFs
RamFs
Ext2fs on Ramdisk

 4k 8k 16k 32k 64k 128k 256k 512k 1m 2m 4m 8m 16m
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

Record length (bytes)

M
is

s
ra

te

L1 Instruction Cache Miss Rate(Random Read Workload)

ScmFs
TmpFs
RamFs
Ext2fs on Ramdisk

 4k 8k 16k 32k 64k 128k 256k 512k 1m 2m 4m 8m 16m
0

0.005

0.01

0.015

0.02

0.025

Record length (bytes)

M
is

s
ra

te

L1 Instruction Cache Miss Rate(Random Write Workload)

ScmFs
TmpFs
RamFs
Ext2fs On Ramdisk

(a) (b) (c) (d)

 4k 8k 16k 32k 64k 128k 256k 512k 1m 2m 4m 8m 16m
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Record length (bytes)

M
is

s
ra

te

L1 Data Cache Miss Rate(Random Read Workload)

ScmFs
TmpFs
RamFs
Ext2fs on Ramdisk

 4k 8k 16k 32k 64k 128k 256k 512k 1m 2m 4m 8m 16m
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Record length (bytes)

M
is

s
ra

te

L1 Data Cache Miss Rate(Random Write Workload)

ScmFs
TmpFs
RamFs
Ext2fs on Ramdisk

 4k 8k 16k 32k 64k 128k 256k 512k 1m 2m 4m 8m 16m
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Record length (bytes)

M
is

s
ra

te

L2 Data Cache Miss Rate(Random Read Workload)

ScmFs
TmpFs
RamFs
Ext2fs on Ramdisk

 4k 8k 16k 32k 64k 128k 256k 512k 1m 2m 4m 8m 16m
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Record length (bytes)

M
is

s
ra

te

L2 Data Cache Miss Rate(Random Write Workload)

ScmFs
TmpFs
RamFs
Ext2fs on Ramdisk

(e) (f) (g) (h)

 4k 8k 16k 32k 64k 128k 256k 512k 1m 2m 4m 8m 16m
0

0.5

1

1.5

2

2.5

3
x 10

5

Record length (bytes)

M
is

se
s

Data TLB Misses(Random Read Workload)

ScmFs
TmpFs
RamFs
Ext2fs on Ramdisk

 4k 8k 16k 32k 64k 128k 256k 512k 1m 2m 4m 8m 16m
0

0.5

1

1.5

2

2.5
x 10

4

Record length (bytes)

M
is

se
s

Data TLB Misses(Random Write Workload)

ScmFs
TmpFs
RamFs
Ext2fs on Ramdisk

 4k 8k 16k 32k 64k 128k 256k 512k 1m 2m 4m 8m 16m
0

200

400

600

800

1000

1200

Record length (bytes)

M
is

se
s

Instruction TLB Misses(Random Read Workload)

ScmFs
TmpFs
RamFs
Ext2fs on Ramdisk

 4k 8k 16k 32k 64k 128k 256k 512k 1m 2m 4m 8m 16m
0

200

400

600

800

1000

1200

1400

1600

1800

Record length (bytes)

M
is

se
s

Instruction TLB Misses(Random Write Workload)

ScmFs
TmpFs
RamFs
Ext2fs on Ramdisk

(i) (j) (k) (l)

Fig. 25. IoZone results(Random workload)

bytes. We believe this is because SCMFS has much higher TLB misses than Ext2 file

system, as shown in Fig.24(j) and Fig.25(j). The reason why SCMFS has much more

TLB misses than the other file systems is we operate the data in SCMFS on virtual

address space while the others employ device level linear address space. The linear

address space is mapped by using a larger page size, such as 2MB. The results shown

in Fig. 24 and 25 are for a single client and SCMFS significantly outperforms ext2fs

when multiple clients are considered as shown below.

We also have done experiments with IoZone by using multiple threads. Fig.26

shows the result where we use normal read()/write() interfaces, while Fig.27 shows

67

4k 8k 16k 32k 64k 128k 256k 512k 1m 2m 4m 8m
1

2

3

4

5

6

7

8

9

10

11
x 10

6

Record length (bytes)

T
hr

ou
gh

pu
t (

kb
yt

es
/s

ec
)

Random Read Performance

Ext2fs on Ramdisk (1 thread)
Ext2fs on Ramdisk (2 threads)
Ext2fs on Ramdisk (4 threads)
ScmFs(1 thread)
ScmFs(2 threads)
ScmFs(4 threads)

4k 8k 16k 32k 64k 128k 256k 512k 1m 2m 4m 8m
1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

6

Record length (bytes)

T
hr

ou
gh

pu
t (

kb
yt

es
/s

ec
)

Random Write Performance

Ext2fs on Ramdisk (1 thread)
Ext2fs on Ramdisk (2 threads)
Ext2fs on Ramdisk (4 threads)
ScmFs (1 thread)
ScmFs (2 threads)
ScmFs (4 threads)

(a) (b)

Fig. 26. IoZone results with multi-thread (Random workload)

the results with mmap() interfaces. When we use mmap() interface, we enable XIP

features for both the file systems. We can see, in both cases SCMFS performs better

than Ext2Fs and obtains higher throughput with more threads. Another observation

is that using mmap()/bcopy() does not perform beyond normal read()/write() inter-

faces. Through our investigation, we believe this is also caused by high TLB misses.

In Ext2fs on Ramdisk, using mmap() will map the address into user address space,

which is not using large page size. By using performance counters, we find that the

number of TLB misses with read()/write() interfaces is only around 200(Ext2fs) or

4,000(SCMFS), while it is more than 2,000,000 with mmap() interfaces in the same

workload.

It is observed from Fig. 26 that SCMFS obtains up to 7GB/s read throughput,

about 70% of the memory bus bandwidth of 10GB/s on our system. It is observed

that the read throughput generally saturates at twice the saturation throughput of

writes, since writes require two memory operations compared to one operation on

read requests.

68

4k 8k 16k 32k 64k 128k 256k 512k 1m 2m 4m 8m
1

2

3

4

5

6

7

8

x 10
6

Record length (bytes)

T
hr

ou
gh

pu
t (

kb
yt

es
/s

ec
)

Random Read Performance

Ext2fs on Ramdisk (1 thread)
Ext2fs on Ramdisk (2 threads)
Ext2fs on Ramdisk (4 threads)
ScmFs (1 thread)
ScmFs (2 threads)
ScmFs (4 threads)

4k 8k 16k 32k 64k 128k 256k 512k 1m 2m 4m 8m
1

1.5

2

2.5

3

3.5

4
x 10

6

Record length (bytes)

T
hr

ou
gh

pu
t (

kb
yt

es
/s

ec
)

Random Write Performance

Ext2fs on Ramdisk (1 thread)
Ext2fs on Ramdisk (2 threads)
Ext2fs on Ramdisk (4 threads)
ScmFs (1 thread)
ScmFs (2 threads)
ScmFs (4 threads)

(a) (b)

Fig. 27. IoZone results with multi-thread, using mmap (Random workload)

3. Postmark Results

We show the results of postmark in Fig.28. We use postmark to generate both read

intensive and write intensive workloads. The file size in the workload is varied between

4k and 40k bytes. In each workload, we create 10,000 files under 100 directories and

perform 400,000 transactions. We again use the PAPI library to investigate the

detailed performance information.

In this test, we not only evaluate original SCMFS, but also evaluate SCMFS

with pre-allocation mechanism, as described in Section IV.3, and with file system

consistency, as described in Section IV.6. We do not include these with the IoZone

workload, since IoZone workload operates on one file and does not exhibit much

difference in performance with these mechanisms.

In the figures, we can see that the performance of all the file systems is close to

each other in the Postmark workload. Postmark workload has many more metadata

operations than the IoZone workload and hence these metadata operations dominate

the file sysem performance. Since the files in the Postmark workload are small, the

69

possibility to use indirect blocks in Ext2fs is very low, and SCMFS doesn’t have

much advantage over Ext2fs. Through the results, we can see that SCMFS still has

lower instruction cache miss rate than Ext2fs, especially in the write workload. Even

though SCMFS has higher data TLB misses, SCMFS provides higher performance

beyond ext2fs.

When we add the pre-allocation mechanism, the read performance of SCMFS

drops slightly and the write performance improves. As we describe in Section IV.3,

the pre-allocation mechanism helps reduce the time to allocate space for new data. In

the last configuration, we add the support of file system consistency that is described

in Section IV6. As anticipated, the performance of SCMFS drops significantly when

write ordering issues are addressed. In the write workload, SCMFS still performs

better than Ext2fs. In the read workload, even though the content of the files are

not changed, the latest access time of each file needs to be updated. Each time the

file metadata gets updated, the costly function “clflush cache range” is called to flush

the cache. That is why the read performance decreases significantly. It is noted that

Ext2fs on ramdisk does not support metadata consistency as SCMFS does. SCMFS

does not rely on any new architectural mechanisms such as epochs in BPFS [64],

which could reduce the costs of enforcing write ordering.

In the Postmark workload, the saturation throughputs are lower than observed

earlier with the IoZone workload, because more metadata operations are involved in

the Postmark workload. It is observed that the TLB misses are significantly higher

in the Postmark workload compared to the IoZone workload.

reddy
Highlight
Include the new data about the impact of allocation size on ext2 file performance.

70

512 1k 2k 4k 8k 16k
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Request size(bytes)

T
hr

ou
gh

pu
t(

M
by

te
s/

se
co

nd
)

Read performance

ScmFs − 3
ScmFs − 2
ScmFs − 1
TmpFs
RamFs
Ext2fs on Ramdisk

512 1k 2k 4k 8k 16k
0

50

100

150

200

250

300

350

Request size(bytes)

T
hr

ou
gh

pu
t(

M
by

te
s/

se
co

nd
)

Write performance

ScmFs − 3
ScmFs − 2
ScmFs − 1
TmpFs
RamFs
Ext2fs on Ramdisk

512 1k 2k 4k 8k 16k
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Request size (bytes)

M
is

s
R

at
e

L1Instruction Cache Miss Rate(Read Workload)

ScmFs
TmpFs
RamFs
Ext2fs on Ramdisk

512 1k 2k 4k 8k 16k
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

Request size (bytes)

M
is

s
R

at
e

L1 Instruction Cache Miss Rate(Write Workload)

ScmFs
TmpFs
RamFs
Ext2fs on Ramdisk

(a) (b) (c) (d)

512 1k 2k 4k 8k 16k
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Request size (bytes)

M
is

s
R

at
e

L1 Data Cache Miss Rate(Read Workload)

ScmFs
TmpFs
RamFs
Ext2fs on Ramdisk

512 1k 2k 4k 8k 16k
0

0.005

0.01

0.015

0.02

0.025

Request size (bytes)

M
is

s
R

at
e

L1 Data Cache Miss Rate(Write Workload)

ScmFs
TmpFs
RamFs
Ext2fs on Ramdisk

512 1k 2k 4k 8k 16k
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Request size (bytes)

M
is

s
R

at
e

L2 Data Cache Miss Rate(Read Workload)

ScmFs
TmpFs
RamFs
Ext2fs on Ramdisk

512 1k 2k 4k 8k 16k
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Request size (bytes)

M
is

s
R

at
e

L2 Data Cache Miss Rate(Write Workload)

ScmFs
TmpFs
RamFs
Ext2fs on Ramdisk

(e) (f) (g) (h)

512 1k 2k 4k 8k 16k
0

1

2

3

4

5

6

7

8

9

10
x 10

5

Request size (bytes)

M
is

se
s

Data TLB Misses(Read Workload)

ScmFs
TmpFs
RamFs
Ext2fs on Ramdisk

512 1k 2k 4k 8k 16k
0

1

2

3

4

5

6

x 10
5

Request size (bytes)

M
is

se
s

Data TLB Misses(Write Workload)

ScmFs
TmpFs
RamFs
Ext2fs on Ramdisk

512 1k 2k 4k 8k 16k
0

50

100

150

200

250

300

350

Request size (bytes)

M
is

se
s

Instruction TLB Misses(Read Workload)

ScmFs
TmpFs
RamFs
Ext2fs on Ramdisk

512 1k 2k 4k 8k 16k
0

50

100

150

200

250

Request size (bytes)

M
is

se
s

Instruction TLB Misses(Write Workload)

ScmFs
TmpFs
RamFs
Ext2fs on Ramdisk

(i) (j) (k) (l)

Fig. 28. Postmark results. SCMFS-1, original SCMFS. SCMFS-2, SCMFS-1 with

space pre-allocation. SCMFS-3, SCMFS-2 with file system consistency.

71

CHAPTER V

RELATED WORK

A. Flash and SSD

Flash storage has received much attention recently. A number of studies have been

done on wear leveling and maintaining uniformity of blocks [33, 34, 35]. Studies have

been done on block management and buffer management [30, 31, 32, 37]. File system

design issues for flash storage have been considered in [36], and a number of file

systems have also been designed for flash devices([76, 77]). Flash translation layers

(FTLs) are employed to mimic log structured file systems in current flash storage

devices. Flash memory has been studied for reducing the power consumption in a

storage system [44].

Performance issues of internal SSD organization and algorithms are well studied.

For example, [36] presents how to build a high-performance SSD device. [31] focuses

on improving random writes for SSD devices. [33] proposes a new page allocation

scheme for flash based file systems. [34] works on garbage collection and [35] on wear-

leveling for the flash based storage systems. Characterization of SSD organization

parameters also has been studied in [57, 58]. [37] provides a very good survey of the

current state of algorithms and data structures designed for flash storages. SSDs are

employed to improve the system performance in [29, 30].

B. Hybrid Storage System

File system based approaches for flash and non-volatile storage can be found, for

example in [42, 62, 43]. These systems can take file level knowledge (data types and

their typical access behavior)into account which may not be available at the device

72

level. We consider a device level approach in this dissertation and we manage storage

across the devices at a block or chunk level instead of at the file level. Second, our

approach can potentially, leave parts of a file on the flash drive and parts of the file

on a disk drive depending on the access patterns, which is not possible in file-based

approaches. In addition, the device level approach may obviate the need for new file

systems or changes to every file system that employs a flash drive. It is not our intent

to argue that the device level approach is better than the file system approach or vice

versa, but that they are based on different assumptions and lead to different design

points and benefits.

Non-uniform striping strategies have been advocated before for utilizing disks

of different capacity and performance [52, 53]. However, these strategies employ

measurement characteristics that do not consider workloads or dynamic performance

characteristics such as waiting times. Our approach in this dissertation is guided

by dynamically measured performance measures and hence can adapt to changing

workloads and configurations without preset allocation ratios.

Several papers recent look at issues in organizing SSDs and magnetic disks in

hybrid storage systems. A file system level approach has been used in [54]. In [55],

magnetic disks are used as write cache to improve the performance as well as extend

the lifetime of SSD devices.

C. Data Migration

Data migration is considered previously in networked devices [6], in large data centers

[4, 5]. This body of work considers optimization of data distribution over longer time

scales than what we consider here. This work considers migration of datasets across

different systems unlike our focus here on migration of data blocks within a single

reddy
Highlight
studies recently looked

reddy
Highlight
a write

73

system. Our work is inspired by much of this earlier work. Migration has also

been employed in memory systems in multiprocessors, for example in [7]. Request

migration has been employed to balance load in web based servers, for example in

[8]. While we employ migration here for load balancing, we also used allocation as a

vehicle for dynamically balancing the load across the different devices in our system.

Migration and caching are extensively studied in the context of memory and

storage systems. Migration has been employed earlier in tape and disk storage sys-

tems [20] and in many file systems [9, 21] and in systems that employ dynamic data

reorganization to improve performance [3, 5, 10, 11, 14, 17, 12, 26, 51, 72]. While

some of these systems employed techniques to migrate data from faster devices to

slower devices in order to ensure sufficient space is available on the faster devices for

new allocations, migrated data in these systems tends to be “cold” data that hasn’t

been accessed for a while. HP’s AutoRAID system considers data migration between

a mirrored device and a RAID device [1]. In these systems, hot data is migrated to

faster devices and cold data is migrated to slower devices to improve the access times

of hot data by keeping it local to faster devices. When data sets are larger than the

capacity of faster devices in such systems, thrashing may occur. Some of the systems

detect thrashing and may preclude migration during such times [1]. Adaptive block

reorganization to move hot blocks of data to specific areas of disks has been studied

in the past [39, 40].

In our hybrid storage system, data can move in both directions from flash to

disk and disk to flash for performance reasons. And, the realized performance in our

system depends on read/write characteristics as well as the recency and frequency

of access. Characteristics of data migration can be much different in our system

compared to earlier hierarchical systems.

Aqueduct [14] also takes a control-theoretic approach to data migration among

74

storage devices without significantly impacting the foreground application work. Aque-

duct uses I/O request response time as a performance measure, but there are signif-

icant differences from our work. First, Aqueduct is guided by static policy decisions

of the system administrator unlike our dynamic choice of blocks during run time.

Data distribution and migration issues are considered in [15, 16, 17] as a result of

configuration changes due to additions and removal of disks in large scale storage

systems. Adaptive file set migration for balancing the metadata workload among

servers in shared-disk file systems is considered in [18]. Observed latencies are used

for migration. Our work is different from this work: (a) Our system is dealing with

migrating block-level data in contrast to file-level data (e.g., file sets), and (b) we

consider read and write requests separately.

D. Non-volatile Byte-addressable Memory

BPFS [64] is proposed as a file system designed for non-volatile byte-addressable

memory, which uses shadow paging techniques to provide fast and consistent updates.

It also requires architectural enhancements to provide new interfaces for enforcing a

flexible level of write ordering. Our file system, SCMFS aims to simplify the design

and eliminate the unnecessary overhead to improve the performance. DFS[56] is

the most similar file system to SCMFS. DFS incorporates the functionality of block

management in the device driver and firmware to simplify the file system, and also

keeps the files contiguous in a huge address space. It is designed for a PCIe based

SSD device by FusionIo, and relies on specific features in the hardware.

A number of projects have previously built storage systems on non-volatile mem-

ory devices. Rio [62] and Conquest [42] use the battery-backed RAM in the storage

system to improve the performance or provide protections. Rio uses the battery-

75

backed RAM to store the file cache to avoid flushing dirty data, while Conquest uses

it to store the file system metadata and small files. In the eNVy storage system [43],

the flash memory is attached to the memory bus to implement a non-volatile mem-

ory device. To make this device byte addressable they designed a special controller

with a battery-backed RAM buffer. Our work assumes that nonvolatile memory is

large enough for both data and metadata and focuses on leveraging memory manage-

ment infrastructure in the system. A data structure level approach to achieve data

consistency on non-volatile memory is described in [79].

Solutions have been proposed to speed up memory access operations, to reduce

writes, and for wear-leveling on PCM devices. Some of these solutions improve the

lifetime or the performance of PCM devices at the hardware level. Some of them use

a DRAM device as a cache of PCM in the hierarchy. Modifications to the memory

controller to eliminate unnecessary bit writes have been proposed [66, 75]. [73, 67,

74, 68] proposed several wear leveling schemes to protect PCM devices from normal

applications and even malicious attacks. Since our SCMFS is implemented on the file

system layer, all the hardware techniques can be integrated with our file system to

provide better performance or stronger protection.

reddy
Highlight
Several wear leveling schemes are proposed to protect....atacks [73,67..].

76

CHAPTER VI

CONCLUSION AND FUTURE WORK

A. Hybrid Storage System

In Chapter II, we study a hybrid storage system employing both flash and disk drives.

We propose a measurement-driven migration strategy for managing storage space in

such a system in order to exploit the read/write performance asymmetry of these

devices. Our approach extracts the read/write access patterns and request size pat-

terns of different blocks and matches them with the read/write advantages of different

devices. We show that the proposed approach is effective, based on realistic experi-

ments on a Linux testbed, employing three different benchmarks. The results indicate

that the proposed measurement-driven migration can be beneficial in such a system.

Our study also provides a number of insights into the different performance aspects

of flash storage devices and allocation policies in such a hybrid system. Our work

show that the read/write characteristics of the workload have a critical impact the

performance of such a hybrid storage system.

In Chapter II, we consider several allocation policies: initially all the data on

flash, all the data on disk, striping, allocation partially determined by the observed

device performance characteristics and metadata on the flash device. Random alloca-

tion has been proposed by others [2, 13] to achieve load balancing with heterogeneous

devices. We will consider random and other allocation schemes that employ file sys-

tem or application level hints, in the future.

Our results show that it is possible to detect the read/write access patterns and

the request sizes to migrate the blocks to the appropriate devices to improve the

device performance in a hybrid system. The measurement-drive approach is shown

reddy
Highlight
We studied

reddy
Highlight
We considered several allocation policies within a hybrid storage system:

reddy
Highlight
remove

reddy
Highlight
Merge this paragraph with the above.

You could probably delete this paragraph.

reddy
Highlight
shows

77

to be flexible enough to adapt to different devices and different workloads.

In Chapter III, we consider block allocation and migration as a means for bal-

ancing the response times of devices across a workload. Dynamically observed per-

formance of the devices is used to guide these decisions. In this part of work, we only

consider the aggregate performance of the devices irrespective of the nature of the

requests (reads/writes, small/large etc.). Our policy allow data to be allocated to

slower devices before the space on the faster devices is exhausted. Our performance-

driven allocation and migration improves performance of the hybrid storage system,

both in improving latency of the requests and the throughput of the requests. We also

show that our policy adapts to different configurations of the storage system under

different workloads.

In the future, we plan to consider the nature of the requests and the performance

of the requests on different devices to improve performance further, in combination

with the allocation based policy presented in this dissertation.

B. SCMFS

In Chapter IV, we present the design of SCMFS, a new file system specially for the

storage class memory. SCMFS utilizes the existing memory management module in

the operating system to help the block management, and keeps the space for each

file always contiguous in the virtual address space. The design of SCMFS simplifies

its implementation, and improves the performance, especially for small size requests.

However, this file system has some disadvantages and limits, and we will consider

them in our future work.

In the current experiment environment, the size of simulated SCM is very small(4GB),

so the size of required mapping table is also very small. The size of mapping table

reddy
Highlight
We considered

reddy
Highlight
allows

reddy
Highlight
merge the two approaches described above into one single policy that considers both measured device performance characteristics and the nature of requests along with appropriate allocation strategies to improve performance further.

reddy
Highlight
We presented

78

will become very large when the SCM is scaled to tens or even hundreds of Gigabytes.

The large mapping table will significantly increase the time to mount the entire file

system. To address this problem, we can delay the memory mapping process, which

means only the virtual address space for metadata and inode table will be mapped

during the time of mounting the file system. All the other address spaces will be

mapped in background after the file system is mounted. If a request to an unmapped

file is received, a page fault will be triggered. In the page fault handler, we will read

the SCM mapping table and map the address. To achieve this, we also need to main-

tain bitmaps (or other compressed data structures) for MM to indicate those physical

addresses and virtual addresses that are already used. The bitmaps are also loaded

to MM module during the mount procedure. Another potential issue the large scale

of SCM may cause is that the TLB cannot cover enough range of memory and results

in many TLB misses. We may use superpages to increase the coverage of TLB and

decrease the TLB misses that require expensive address translations.

In current implementation, we reserve a large virtual space for SCMFS and do

not consider the extreme case of fragmentation, in which there is enough physical

space but there is no contiguous virtual space for a new file. In the future work, we

consider to add defragmentation of virtual address space into the thread of garbage

collection.

Most SCM technologies have limits on write cycles to individual memory loca-

tions. In our current work, we do not incorporate any algorithms for wear leveling

of the underlying SCM. We plan to include this as part of allocation process in the

future.

79

REFERENCES

[1] J. Wilkes, R. A. Golding, C. Staelin, T. Sullivan. The HP AutoRAID Hierarchi-

cal Storage System. ACM Trans. Comput. Syst. 14(1): 108-136 (1996).

[2] IBM Almaden Research Center. Collective Intelligent Bricks (CIB).

http://www.almaden.ibm.com/StorageSystems/

autonomic storage/CIB/index.shtml, 2001.

[3] B. Gavish and O. Sheng. Dynamic File Migration in Distributed Computer

Systems. Commun. ACM, pages: 177-189, 1990.

[4] E. Anderson et al., Hippodrome: Running circles around storage administration.

USENIX FAST Conf., Jan. 2002.

[5] L. Yin, S. Uttamchandani and R. Katz. SmartMig: Risk-modulated Proactive

Data Migration for Maximizing Storage System Utility. In Proc. of IEEE MSST

(2006).

[6] S. Kang and A. L. N. Reddy. User-centric data migration in networked storage

devices. Proc. of IPDPS, Apr. 2008.

[7] E. P. Markatos and T. J. LeBlanc. Load Balancing vs. Locality Management in

Shared-Memory Multiprocessors. Tech. Report: TR399, University of Rochester,

1991.

[8] V. S. Pai, M. Aron, G. Banga, M. Svendsen, P. Druschel, W. Zwaenepoel, and

E. M. Nahum. Locality-Aware Request Distribution in Cluster-based Network

Servers. In Proc. of ASPLOS (1998).

80

[9] E. Miller and R. Katz. An Analysis of File Migration in a UNIX Supercomputing

Environment. In Proc. of USENIX (1993).

[10] M. Lubeck, D. Geppert, K. Nienartowicz, M. Nowak and A. Valassi. An

Overview of a Large-Scale Data Migration. In Proc. of IEEE MSST (2003).

[11] R. M. English and A. A. Stepanov. Loge: A Self-Organizing Disk Controller. In

Proc. of USENIX Winter (1992).

[12] R. Wang, T. E. Anderson, and D. A. Patterson. Virtual Log-Based File Systems

for a Programmable Disk. In Proc. of OSDI (1999).

[13] S. Ghemawat, H. Gobioff and S-T. Leung. The Google File system. In Proc. of

SOSP (2003).

[14] C. Lu, G. A. Alvarez and J. Wilkes Aqueduct: online data migration with

performance guarantees In Proc. of FAST (2002).

[15] A. Brinkmann, K. Salzwedel and C. Scheideler. Efficient, distributed data place-

ment strategies for storage area networks (extended abstract). In Proc. of SPAA

(2000).

[16] Y. Saito, S. Frølund, A. Veitch, A. Merchant and S. Spence. FAB: building

distributed enterprise disk arrays from commodity components. In Proc. of AS-

PLOS (2004).

[17] R. Honicky and E. Miller. A Fast Algorithm for Online Placement and Reorga-

nization of Replicated Data. In Proc. of IPDPS (2003).

[18] C. Wu and R. Burns. Handling Heterogeneity in Shared-Disk File Systems. In

Proc. of SC (2003).

81

[19] V. Borkar and P. R. Kumar. Dynamic Cesaro-Wardrop Equilibration in Net-

works. IEEE Trans. on Automatic Control 48(3): 382-396 (2003).

[20] A. J. Smith. Long Term File Migration: Development and Evaluation of Algo-

rithms. Communications of ACM 24(8): 521-532 (1981).

[21] V. Cate and T. Gross. Combining the Concepts of Compression and Caching for

a Two-level File System. In Proc. of ASPLOS (1991).

[22] Standard Performance Evaluation Corporation. SPEC SFS97 R1 V3.0

http://www.spec.org/osg/sfs97r1.

[23] R. P. Martin and D. E. Culler. NFS Sensitivity to High Performance Networks.

In Proc. of SIGMETRICS (1999).

[24] L. Peterson and B. Davies. Computer Networks: A Systems Approach. Morgan

Kauffman Publishers (2000).

[25] IOZONE file system benchmark. http://www.iozone.org/, accssessed 01/2011.

[26] S. D. Carson and P. F. Reynolds, Adaptive disk reorganization. Tech. Rep.:

UMIACS-TR-89-4, University of Maryland, College Park, Maryland, January

1989.

[27] M. McKusick and W. Joy and S. Leffler and R. Fabry. A Fast File System for

UNIX. ACM Transactions on Computer Systems, 2(3):181-197, August 1984.

[28] G. Ganger and Y. Patt. Metadata Update Performance in File Systems.

USENIX Symposium on Operating Systems Design and Implementation, pp. 49-

60, November 1994.

82

[29] I. Koltsidas and S. Viglas. Flashing up the storage layer. Proc. of VLDB, Aug.

2008.

[30] T. Kgil, D. Roberts and T. Mudge. Improving NAND Flash Based Disk Caches.

Proc. of ACM Int. Symp. Computer Architecture, June 2008.

[31] H. Kim and S. Ahn. BPLRU: A buffer management scheme for improving ran-

dom writes in flash storage. Proc. of USENIX FAST Conf., Feb. 2008.

[32] H. Kim and S. Lee. An effective flash memory manager for reliable flash memory

space management. IEICE Trans. on Information systems., June 2002.

[33] S. Baek et al. Uniformity improving page allocation for flash memory file systems.

Proc. of ACM EMSOFT, Oct. 2007.

[34] J. Lee et al. Block recycling schemes and their cost-based optimization in NAND

flash memory based storage system. Proc. of ACM EMSOFT, Oct. 2007.

[35] Li-Pin Chang. On efficient wear leveling for large-scale flash-memory storage

systems. Proc. of ACM SAC Conf., Mar. 2007.

[36] A. Birrell, M. Isard. C. Thacker and T. Wobber. A design for high-performance

flash disks. ACM SIGOPS Oper. Syst. Rev., 2007.

[37] E. Gal and S. Toledo. Algorithms and data structures for flash memories. ACM

Computing Surveys, June 2005.

[38] S. Brandt, L.Xue, E. Miller and D.Long. Efficient metadata management in

distributed storage systems. Proc. of IEEE Mass Storage Symp., 2003.

[39] S. Akyurek and K. Salem. Adaptive block rearrangement. Computer Systems,

vol.13, no.2, pages 89-121, 1995.

83

[40] R. Tewari, R. King, D. Kandlur and D. Dias. Placement of Multimedia blocks

on zoned disks. Proc. of Multimedia Computing and Networking, Jan. 1996.

[41] Jeffrey Katcher. Postmark: A New File System Benchmark.

http://www.netapp.com/tech library/3022.html.

[42] A.-I. A. Wang, P. Reiher, G. J. Popek, and G. H.Kuenning. Conquest: Better

performance through a disk/persistent-ram hybrid file system. In Proceedings of

the USENIX Annual Technical Conference, June 2002.

[43] M.Wu and W. Zwaenepoel. envy: A non-volatile, main storage system. Proc. of

ASPLOS, 1994.

[44] L. Useche, J. Guerra, M. Bhadkamkar, M. Alarcon and R. Rangaswami. EXCES:

External caching and energy saving storage systems. Proc. of HPCA, 2008.

[45] X. Wu and A. L. N. Reddy. Managing storage space in a flash and disk hybrid

storage system. IEEE MASCOTS Conf., 2009.

[46] X. Wu and A. L. N. Reddy. Exploiting concurrency to improve latency and

throughput in a hybrid storage system. IEEE MASCOTS Conf., 2010.

[47] Dbench benchmark. Available from ftp://samba.org/pub/tridge/dbench/

[48] J. G. Wardrop. Some theoretical aspects of road traffic research. Proc. of Inst.

of Civil Engineers, part II, vol.1, 1952.

[49] F. Shu and N. Obr. Data set management commands proposal for ATA8-ACS2.

www.t13.org, Dec. 2007.

84

[50] A. W. Lueng, S. Pasupathy, G. Goodson and E. L. Miller. Measurement and

Analysis of large-scale network file system workloads. Usenix Technical Conf.,

2008.

[51] M. Bhadkamkar, J. Guerra, L. Useche, S. Burnett, J. Liptak, R. Rangaswami,

and V. Hristidis. BORG: Block-reORGanization for Self-Optimizing Storage

Systems. Proc. of USENIX FAST, 2009.

[52] S. Kashyap and S. Khuller. Algorithms for non-uniform sized data placement

on parallel disks. Foundations of software technology and theoretical computer

science. Springerlink., 2003.

[53] J.Wolf, H.Shachnai and P. Yu. DASD Dancing: A disk load-balancing optimiza-

tion scheme for on-demand video-on-demand computer systems. ACM SIGMET-

RICS, 1995.

[54] J. Garrison, A. L. N. Reddy. Umbrella File system: Storage management across

heterogeneous devices. Texas A&M University Tech. Report, Decc. 2007.

[55] G. Soundararajan, V. Prabhakaran, M. Balakrishnan and T. Wobber. Extending

SSD lifetimes with disk-based write caches. Proc. of USENIX FAST, 2010.

[56] W. K. Josephson, L.A. bongo, D. Flynn and Kai Li. DFS: A new file system for

virtualized flash storage. Proc. of USENIX FAST, 2010.

[57] J-H. Kim, D. Jung, J-S. Kim and J. Huh. A methodology for extracting per-

formance parameters in solid state disks (SSDs). Proc. of IEEE MASCOTS,

2009.

[58] F. Chen, D. Koufaty and X. Zhang. Understanding intrinsic characteristics and

system implications of flash memory based solid state drives. Proc. of ACM

85

SIGMETRICS, 2009.

[59] S. Raoux, G. W. Burr, M. J. Breitwisch, C. T. Rettner, Y. -c. Chen, R. M. Shelby,

M. Salinga, D. Krebs, S. -h. Chen, H. -l. Lung and C. H. Lam. Phase-change

random access memory: A scalable technology. 2008

[60] Philip J. Mucci, Shirley Browne, Christine Deane and George Ho. PAPI: A

Portable Interface to Hardware Performance Counters. In Proceedings of the

Department of Defense HPCMP Users Group Conference, 1999

[61] D. B. Strukov, G. S. Snider, D. R. Stewart and R. S. Williams. The missing

memristor found. Nature, vol.453, pp. 80-83, May 2008.

[62] Peter M. Chen, Wee Teck Ng, Gurushankar Rajamani and Christopher M. Ay-

cock. The Rio File Cache: Surviving Operating System Crashes. In Proc. 7th

Intl. Conference on Architectural Support for Programming Languages and Op-

erating Systems (ASPLOS,1996.

[63] Peter Snyder. tmpfs: A virtual memory file system. In Proceedings of the

Autumn 1990 European UNIX Users’ Group Conference, pp. 241–248, 1990.

[64] Engin Ipek, Jeremy Condit, Benjamin Lee, Edmund B. Nightingale, Doug

Burger, Christopher Frost and Derrick Coetzee. Better I/O Through Byte-

Addressable, Persistent Memory. 2009.

[65] Moinuddin K. Qureshi, Vijayalakshmi Srinivasan and Jude A. Rivers. Scalable

high performance main memory system using phase-change memory technology.

In International Symposium on Computer Architecture (ISCA), pp. 24-33, 2009

[66] Lee, B.C.,Ping Zhou, Jun Yang, Youtao Zhang, Bo Zhao, Ipek, E., Mutlu, O. and

Burger, D. Phase-Change Technology and the Future of Main Memory. IEEE

86

Micro, 2010.

[67] M.Qureshi, John Karidis, Michele Franceschini, Vijayalakshmi Srinivasan and

Luis Lastras and Bulent Abali. Enhancing Lifetime and Security of PCM-based

Main Memory with Start-Gap Wear Leveling. The 42nd Annual IEEE/ACM

MICRO, 2009.

[68] Ping Zhou, Bo Zhao, Jun Yang and Youtao Zhang. A Durable and Energy

Efficient Main Memory using Phase Change Memory Technology. The 36th

Annual IEEE/ACM ISCA, 2009.

[69] M.Qureshi and Franceschini, M.M. and Lastras-Montano,L.A. Improving Read

Performance of Phase Change Memories Via Write Cancellation and Write Paus-

ing. The IEEE 16th HPCA, 2010.

[70] Numonyx. The basics of phase change memory (PCM) technology: A new class

of non-volatile memory., 2008.

[71] Bedeschi, F. and Fackenthal, R. and Resta, C. and Donze, E.M. and Jagasiva-

mani, M. and Buda, E.C. and Pellizzer, F. and Chow, D.W. and Cabrini, A.

and Calvi, G. and Faravelli, R. and Fantini, A. and Torelli, G. and Mills, D.

and Gastaldi, R. and Casagrande, G., A Bipolar-Selected Phase Change Mem-

ory Featuring Multi-Level Cell Storage. IEEE Journal of Solid-State Circuits,

Jan.2009.

[72] Dhiman, G. and Ayoub, R. and Rosing, T. PDRAM: A Hybrid PRAM and

DRAM Main Memory System. The 46th ACM/IEEE DAC, 2009.

[73] Seong, Nak Hee and Woo, Dong Hyuk and Lee, Hsien-Hsin S. Security refresh:

prevent malicious wear-out and increase durability for phase-change memory

87

with dynamically randomized address mapping. The 37th Annual IEEE/ACM

ISCA, 2010.

[74] M.Qureshi and Andre Seznec and Luis Lastras and Michele Franceschini. Prac-

tical and Secure PCM Systems by Online Detection of Malicious Write Streams.

The IEEE 17th HPCA, 2011.

[75] Lee, Benjamin C. and Ipek, Engin and Mutlu, Onur and Burger, Doug. Archi-

tecting Phase Change Memory as a Scalable Dram Alternative. The 36th Annual

IEEE/ACM ISCA, 2009.

[76] WOODHOUSE, D. JFFS: The journalling flash file system. In Ottawa Linux

Symposium, RedHat Inc , 2001.

[77] YAFFS, http://www.yaffs.net/.

[78] Advanced Configuration and Power Interface Specification 3.0.

[79] Shivaram Venkataraman, Niraj Tolia, Parthasarathy Ranganathan, and Roy

H. Campbell. Consistent and Durable Data Structures for Non-Volatile Byte-

Addressable Memory. In Proceedings of the 9th Usenix Conference on File and

Storage Technologies (FAST), 2011.

88

VITA

Xiaojian Wu received his Bachelor of Science degree and Master of Science degree

in Electrical Engineering from Huazhong University of Science & Technology, Wuhan,

China, in July 1998 and July 2003, respectively. He entered the Ph.D. program in

Computer Engineering at Texas A&M University in August 2007. During 2003-2006,

he worked as a software engineer at Intel Asia-Pacific R&D in Shanghai, China. His

research interests include storage systems, cloud systems and semantic web. He is a

member of IEEE.

The typist for this thesis was Xiaojian Wu.

