ECEN 689
Special Topics in Data Science for Communications Networks

Nick Duffield
Department of Electrical & Computer Engineering
Texas A&M University

Acknowledgement: adapted partly from slides by Edith Cohen
Lecture 11
Probabilistic Counting in a Stream

1, 1, 1, 1, 1, 1, 1, 1, 1,

• Simple counting
 – Accumulate count in $\log_2(n)$ bits where n is the current count

• Can we use fewer bits? Important when we have many streams to count, fast memory is scarce (e.g. inside a backbone router)

• Can we reduce storage size if an approximate count suffices?
Probabilistic Counting in a Stream

a, b, b, c, b, b, b, c,

• Counting multiple keys: \(n_a, n_b, n_c \) etc.

• Can we tune counting to focus resources on “important” keys
 – Frequent keys

• Example:
 – Packet stream; focus on large flows (high counts \(n \))
Outline

• Morris counting algorithm
• Frequent element counting
• Concise samples
• Counting samples
• Sample and hold
Morris Algorithm 1978

1, 1, 1, 1, 1, 1, 1, 1, 1,

• The first streaming algorithm
 – Stream of positive increments

• Idea
 – Track log n instead of n
 – Use log log n bits instead of log n bits
Deterministic Approach?

1, 1, 1, 1, 1, 1, 1, 1, 1,

• Can we simply maintain a count of $\log_2 n$?
 – using $\log \log 2$ bits

• Problem
 – We are actually maintaining integer part $x = \text{floor}(\log_2 n)$
 – Fractional part of $\log_2 n$ is lost

<table>
<thead>
<tr>
<th>n</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>floor($\log_2 n$)</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

• When to increment x?
Morris Algorithm

- Maintain a “log” counter x
- Initialize to 0
- Each arrival:
 - increment with probability $p_x = 2^{-x}$
- Query: output estimate $n' = 2^x - 1$
Morris Algorithm: Birth Process

• Let $X(n)$ denote count after arrival n
• Pure birth process
 – Transition $x \rightarrow x+1$ with probability 2^{-x}
Morris Algorithm: Unbiasedness

• Initialize $x = 0$; increment w.p. $p_x = 2^{-x}$; estimate $n' = 2^x - 1$

• $n = 1$
 – before: $x = 0$ $p_0 = 1$
 – prob. 1: $x\rightarrow 1$
 – estimate $n' = 2^1 - 1 = 1 = n$

• $n = 2$;
 – before: $x = 1$; $p_1 = \frac{1}{2}$
 – prob. $\frac{1}{2}$: x stays at 1; $n' = 2^1 - 1 = 1$
 – prob. $\frac{1}{2}$: $x\rightarrow 2$. $n' = 2^2 -1 = 3$
 – $E[n'] = \frac{1}{2} \times 1 + \frac{1}{2} \times 3 = 2 = n$
Morris algorithm: general case

- Let $X(n)$ denote random counter x after n^{th} arrival
- Initialize $X(0) = 0$; increment w.p. $p_x = 2^{-x}$
- Estimate $n' = 2^{X(n)} - 1$

- $E[2^{X(n)}] = \sum_{j=1,...,n-1} \Pr[X(n-1) = j] E[2^{X(n)} | X(n-1) = j]$
 $= \sum_{j=1,...,n-1} \Pr[X(n-1) = j] (p_j 2^{j+1} + (1-p_j) 2^j)$
 $= \sum_{j=1,...,n-1} \Pr[X(n-1) = j] (2^j + 1)$
 $= E[2^{X(n-1)}] + 1$

- Iterating: $E[2^{X(n)}] = E[2^{X(0)}] + n = 1 + n$
- Therefore: $E[2^{X(n)} - 1] = n$

- Conclusion: $n' = 2^{X(n)} - 1$ is an unbiased estimator of n
Morris algorithm: variance

- \(\text{Var}[n'] = \text{Var}[2^{X(n)} - 1] = \text{Var}[2^{X(n)}] \)
 = \(E[2^{2X(n)}] - E[2^{X(n)}]^2 \)
 = \(E[2^{2X(n)}] - (n+1)^2 \)

- \(E[2^{2X(n)}] = \sum_{j=1,\ldots,n-1} \Pr[X(n-1) = j] E[2^{2X(n)} | X(n-1) = j] \)
 = \(\sum_{j=1,\ldots,n-1} \Pr[X(n-1) = j] (p_j 2^{2j+2} + (1-p_j) 2^{2j}) \)
 = \(\sum_{j=1,\ldots,n-1} \Pr[X(n-1) = j] (2^{j+2} + 2^{2j} - 2^j) \)
 = \(\sum_{j=1,\ldots,n-1} \Pr[X(n-1) = j] (3*2^j + 2^{2j}) \)
 = \(3E[2^{X(n-1)}] + E[2^{2X(n-1)}] \)
 = \(3n + E[2^{2X(n-1)}] \)

- Iterate: \(E[2^{2X(n)}] = 3\sum_{m=1,\ldots,n} m + E[2^{2X(0)}] \)
 = \(3n(n+1)/2 + 1 \)

- \(\text{Var}[n'] = n(n+1)/2 \)
Morris algorithm

- Coefficient of Variation = $\text{StdDev} / n^2 \approx 1/\sqrt{2}$:
 - doesn’t improve as n grows

- How to improve?
Morris Algorithm: Reducing Variance 1

• Change base of logarithms $2 \rightarrow b > 1$
• Instead of counting $\log_2(n)$, count $\log_b(n)$
• Increment counter x with probability b^{-x}
 – Method of base 2 analysis carries through
• $E[b^{X(n)}] = (b-1)n + b$
 – $n' = (E[b^{X(n)}] - 1)/(b-1)$ is an unbiased estimator of n
• $\text{Var}[n'] = (b-1)n(n+1)/2$
• By decreasing b closer to 1
 – Decrease variance
 – Increase size of storage needed
 • $b \rightarrow \log_b(n)$ increases
Morris Algorithm: Reducing Variance 2

• Familiar approach
 – Multiple independent estimates
• Mean of estimates
• Median of means
Frequent Element Counting

- Elements occur multiple times
- Want to find which elements occur most often
- Stream size n
- m distinct elements
Frequent Elements

\[a, \ b, \ b, \ c, \ b, \ b, \ b, \ c, \]

- **Applications**
 - Networking: find “elephant” flows
 - Search: find the most frequent queries

- **Pareto Principle**
 - Typical frequency distributions are highly skewed
 - Small proportion of elements are very frequent

- **Zipf’s Law**
 - Rank elements by frequency
 - Frequency of rank \(k \) element proportional to \(1/k^s \), some \(s > 1 \)
Frequent Elements: exact solution

\[a, b, b, c, b, b, b, c,\]

- Maintain counter for each distinct element
 - Instantiate on first occurrence
 - Increment on every occurrence

- Problem
 - Need to maintain m counters
 - Generally only have room for $k << n$ counters
Frequent Elements: Misra & Gries 1982

a, b, b, c, b, b, b, c,

• Processing an element x
 – If: already have counter for x, increment it
 – Else if: no counter for x, but fewer than k counters, create a counter for x and initialize it to 1
 – Else: decrease all counters by 1. Remove counters containing 0.

• Query: how many times did x occur?
 – If: we have a counter for x, return counter value
 – Else: return 0

• Clearly an underestimate
Misra & Gries: Analysis

For each x: true value – counter = # decrements
How many possible decrements to counter for x?
Suppose sum of counters is $n' < n = \text{length of stream}$
Each decrement step removes k counts
 – Also did not count the current arrival
Therefore $k+1$ undercounts from each decrement
 – There are at most $d = (n-n')/(k+1)$ decrement steps
Misra & Gries: Analysis

\[a, \ b, \ b, \ c, \ b, \ b, \ b, \ c, \]

- There are at most \(d = \frac{n-n'}{k+1} \) decrement steps
- Counter for \(x \) is smaller than count by at most \(d \)
 - Good estimates when \(\text{counter}(x) \gg d \)
 - Error bound proportional to \(k \)
 - Track \(m \) by count (or estimate)
- Works since typical distributions have few frequent elements
Bibliography

• Approximate counting (Morris Algorithm)
 • Philippe Flajolet Approximate counting: A detailed analysis. BIT 25 1985
 – http://algo.inria.fr/flajolet/Publications/Flajolet85c.pdf

• Frequent element summaries