ECEN 689
Special Topics in Data Science for Communications Networks

Nick Duffield
Department of Electrical & Computer Engineering
Texas A&M University

Lecture 18
Measuring link loss rates

- Link transmission rates α_i
 - Fraction $1 - \alpha_i$ of packets traversing link i are lost
- Path comprising links n links $\{1, 2, \ldots, n\}$
- Path transmission rate $\beta = \prod_{i=1}^{n} \alpha_i$
 - Fraction $1 - \beta$ of packets are lost somewhere on path
- What is pattern of loss?
 - Uniformly distributed loss: $\alpha_i = \beta^{1/n}$
 - Localized loss: one of the $\alpha_i = \beta$, all other $\alpha_i = 1$
- Can’t distinguish these (or other) loss patterns given only β
 - Think: identifiability
Network Performance Tomography

• Goal:
 – determine performance of links and routers inside the internet using measurements made from its edge

• Analogy:
 – medical imaging tomography:
 • determine structures inside a body using images formed by radiation that has passed through the body
Medical Imaging Tomography

• Basis:
 – different tissue types absorb radiation differently
 • e.g. bone more strongly absorbent, soft tissue less so

• Aim:
 – build 3-d picture of body by probing with radiation
 • of how strongly it absorbs radiation at different points

• Method:
 – Create multiple 2-d views
 • probe with radiation
 • measure transmitted intensity
 – a point in 2-d view indicates cumulative absorption along line
 – Combine and correlate the views
 • statistical analysis to obtain 3-d picture
 – determine absorption properties at each point
Key Ideas

• Multiple views of an object

• Each view represents cumulative effect on probes due to some property of object

• Correlate views to determine the property at each point in object
Principles of Performance Tomography

• Setting:
 – end-to-end paths traverse many links of the Internet
 – path performance (e.g. packet delay) cumulative over links
• Aim:
 – determine link performance from end-to-end measures
• Application:
 – multiple views of the network
 • measure end-to-end performance with probe packets along different paths
 – correlate measurements on intersecting paths
 • to infer link performance
Network-Independent Measurement

• No participation by network assumed
 – other than the usual forwarding of packets
 • measurement probes are just regular packet

• No administrative access to network needed
 – methods does not use internal operational statistics
 • e.g. no router statistics / packet monitors

• Deployment
 – Fixed measurement infrastructure
 • measurements between dedicated measurement hosts
 – Embedded measurement infrastructure
 • piggybacking on regular traffic, protocols and hosts
Usage Scenarios

• User coalitions
 – users have little access to operational statistics
 – instead: share and correlate measurements
 • across multiple service providers
 – pinpoint performance bottlenecks

• Provider networks
 – diagnose performance degradation
 – in contractor network
 • of dumb network elements that keep no operational statistics
Limits of unicast probing

- Transmission rate α_i on link i
 - Link i = directed link (j,i) with terminal node i, some j
- $A_i =$ path transmission rate from 0 to i
 - $A_1 = \alpha_1$; $A_2 = \alpha_1 \alpha_2$; $A_3 = \alpha_1 \alpha_3$
- Assume:
 - Can measure transmission rate to leaf nodes 2 and 3
 - Can not measure transmission rate to interior node 1
- Can we determine $\{\alpha_1, \alpha_2, \alpha_3\}$ from A_2 and A_3?
- No: 2 knowns, 3 unknowns
- Linear equations
 - $(\log A_2, \log A_3)^T = M. (\log \alpha_1, \log \alpha_2, \log \alpha_3)^T$: M not of full rank
Multicast and Correlation

- Multicast probes good for tomography
 - inherent correlation
 - contribution to end-to-end performance from common path is identical

- How to exploit this correlation for network tomography
Unicast vs. Multicast

- **Setting:**
 - Sending same content to multiple receivers
- **Unicast:**
 - send one packet to each receiver
- **Multicast:**
 - send one packet, replicate as necessary in network
Tree and Loss Model

- **Tree model**
 - Tree $G=(V,L) = (\text{nodes, links})$
 - source multicast probes from root node 0
 - set $R \subset V$ of receiver nodes at leaves

- **Loss model**
 - probe traverses link k with prob. $\alpha_k \in (0,1)$
 - otherwise lost
 - loss independent between links, probes
Probe process

- Stochastic Process $(X_k)_{k \in V}$
- $X_k = 1$ if probe reaches node k, 0 otherwise
- $X_0 = 1$
 - probe is present at root at root node
- $\{X_j : j \in d(k)\}$ conditionally independent given X_k
 - $d(k) = \text{children of } k$
- $P[X_k = 1 | X_{f(k)} = 1] = \alpha_k$
 - $f(k) = \text{parent of } k$
- $X_k = 0$ whenever $X_{f(k)} = 0$
 - a lost probe remains lost
Performance Tomography in a Simple Tree

- Each probe has one of 4 possible outcomes at leaves
 - \((X_2, X_3) \in \{ (1,1), (1,0), (0,1), (0,0) \} \)
- Theoretical outcome frequencies
 - \(p_{11} = \alpha_1 \alpha_2 \alpha_3\)
 - \(p_{10} = \alpha_1 \alpha_2 (1 - \alpha_3)\)
 - \(p_{01} = \alpha_1 (1 - \alpha_2) \alpha_3\)
 - \(p_{00} = (1 - \alpha_1) + \alpha_1 (1 - \alpha_2)(1 - \alpha_3)\)

![Diagram of a simple tree with labeled nodes and edges]
Performance Tomography in a Simple Tree

• Measurement
 – Dispatch \(n \) independent multicast probes from source \(0 \)
 – Record outcomes for each packet, each leaf (received or not)

• Compute measured outcome frequencies
 – For each \((ab) \in \{ (1,1), (1,0), (0,1), (0,0) \} \)
 – \(p'_{ab} \) = fraction of probes for which outcome is \(ab \)

\[\begin{align*}
\text{Source} & \quad \alpha_1 \quad \alpha_2 \quad \alpha_3 \\
\text{Receivers} & \quad 2 \quad 3
\end{align*} \]
Performance Tomography in a Simple Tree

- Estimation
- Equate measured frequencies p' with theoretical counterparts p
 \[p'_{11} = p_{11} = \alpha_1 \alpha_2 \alpha_3 ; \]
 \[p'_{10} = p_{10} = \alpha_1 \alpha_2 (1 - \alpha_3) ; \]
 \[p'_{01} = p_{01} = \alpha_1 (1 - \alpha_2) \alpha_3 \]

- 3 independent equations, 3 unknowns α_1, α_2, α_3
- 4th equation $p'_{00} = p_{00}$ not independent: frequencies sum to 1
- Solution
 - Estimates α'_1, α'_2, α'_3 as solutions to equations

\[\alpha'_1 = \frac{(p'_{11} + p'_{10})(p'_{11} + p'_{01})}{p'_{11}}, \alpha'_2 = \frac{p'_{11}}{p'_{11} + p'_{01}}, \alpha'_3 = \frac{p'_{11}}{p'_{11} + p'_{10}} \]
General Loss Estimator and Properties

• Leaf descendent sets
 - \(R(k) = \{ \text{nodes } j \in R : j \text{ is descended from } k \} \)
• Define \(\gamma_k = \Pr_\alpha[\text{probe reaches any } j \in R(k)] \)
• Establish 1-1 relationship between
 - Link probabilities \(\alpha = \{ \alpha_k : k \in V \} \)
 - Leaf set probabilities \(\gamma = \{ \gamma_k : k \in V \} \)
• Formally write \(\gamma = G(\alpha) \)
• Theorem
 • \(G \) is 1-1 with differentiable inverse
General Loss Estimator and Properties

- Measurement
 - Dispatch n independent multicast probes from source 0
 - Record outcomes for each packet, each leaf (received or not)
 - For all $k \in V$, compute γ'_k
 - Fraction of probes that reach any $j \in R(k)$

- Estimation: $\alpha' = G^{-1}(\gamma')$
General Loss Estimator and Properties

• Theorem
 – G is 1-1 with differentiable inverse G^{-1}

• Details
 – set $A_k = \text{Prob}[\text{packet reaches } k \text{ from } 0]$
 $\quad = \prod_{j \text{ ancestor of } k} \alpha_k$
 – can show $(1 - \gamma_k / A_k) = \prod_{j \in d(k)} (1 - \gamma_j / A_k)$
 • $d(k) = \text{children of } k$
 – A_k is root of polynomial of degree $|d(k) - 1|$
 • with coefficients involving γ_k, and $\{\gamma_j : j \in d(k)\}$

• Find α_k as quotients of $A_k / A_{f(k)}$
 – $f(k) = \text{parent of } k$
General Loss Estimator and Properties

- Proof that \((1 - \gamma_k / A_k) = \prod_{j \in d(k)} (1 - \gamma_j / A_k)\)
- \(\gamma_k / A_k = \text{Prob}[\text{reaches } R(k) \mid \text{reach } k]\)
- \(1 - \gamma_k / A_k = \text{Prob}[\text{don’t reach } R(k) \mid \text{reach } k] = \prod_{j \in d(k)} \text{Prob}[\text{don’t reach } R(J) \mid \text{reach } k] = \prod_{j \in d(k)} (1 - \gamma_j / A_k)\)
Statistical Properties of Loss Estimator

• Maximum Likelihood Estimator

\[\alpha'_k = \arg\max_{\alpha} \Pr_{\alpha} \text{[measured data]} \]

• Strongly consistent (converges to true value)

\[\alpha' \to \alpha \text{ as } \#\text{probes } n \to \infty \]

• Asymptotically normal

\[\sqrt{n} \cdot (\alpha' - \alpha) \to \text{multivariate normal r.v. as } n \to \infty \]

\[\text{Var}(\alpha'_k) \approx (1 - \alpha_k)/n \text{ for large } n, \text{ small loss } 1 - \alpha_k \]

– (MLE efficient [minimum asymptotic variance])

• Model is identifiable

– distinct link parameters \(\alpha \) yield distinct leaf loss distributions