ECEN 689
Special Topics in Data Science for Communications Networks

Nick Duffield
Department of Electrical & Computer Engineering
Texas A&M University

Lecture 9
Count-Min Update

• When \((i(t), c(t))\) arrives:

\[\text{add } c(t) \text{ to the element at column } h_j(i(t)) \text{ in each row } j \]

\[K[j, h_j(i(t))] + c(t) \text{ for } j = 1, 2, \ldots, d \]

\[\begin{array}{cccccc}
\vdots & \vdots & + c(t) & \vdots & \vdots & \\
\vdots & \vdots & + c(t) & \vdots & \vdots & \\
\vdots & \vdots & \vdots & \vdots & \vdots & \\
\vdots & \vdots & \vdots & \vdots & \vdots & \\
\vdots & \vdots & \vdots & \vdots & \vdots & \\
\vdots & \vdots & \vdots & \vdots & \vdots & \\
\end{array} \]

• Approximate \(a_i(t) = \sum_{s \leq t: i(s) = i} c(s)\) by \(\min_j K[j, h_j(i)]\) at time \(t\)
Dyadic Partitions and Range Queries

• Partition n into **dyadic ranges** in $O(\log n)$ ways

 \{1,2,3,4,5,6,7,8\}

 \{1,2,3,4\} \quad \{5,6,7,8\}

 \{1,2\} \quad \{3,4\} \quad \{5,6\} \quad \{7,8\}

 \{1\} \quad \{2\} \quad \{3\} \quad \{4\} \quad \{5\} \quad \{6\} \quad \{7\} \quad \{8\}

• Any subinterval $[r,s]$ on $[1,n]$ can be expressed as a disjoint union of at most $2 \log n$ dyadic ranges D

• Maintain Count-Min sketch for each dyadic partition

• Estimate $a[r,s]$ by $a'[r,s] = \sum_{i=1}^{k} a'(D_i)$ where $a'(D_i)$ is Count-Min estimator for dyadic range D_i
Count-Min Sketch: Quantile Queries

• Consider \(a_i\) as weights of distribution over \(\{1, 2, \ldots, n\}\)

• \(\phi\)-quantile: \(j : a_1, \ldots, a_j\) have fraction \(\phi\) of total weight \(|a|_1\)

\[
\Sigma_{i=1, \ldots, j} a_i \leq \phi |a|_1 \leq \Sigma_{i=j+1, \ldots, nj} a_i
\]

• Example: median, with \(\phi = \frac{1}{2}\)

• Find approximate quantiles: tolerate error \(\varepsilon |a|_1\)

• Method: binary search on range sums
 – Exploit binary tree structure of dyadic sums
Count-Min Sketch Heavy Hitters

- **ϕ-heavy hitters**: elements \(i \) that have at least fraction \(\phi \) of total weight:

\[
a_i \geq \phi |a|_1
\]

- Find using search on dyadic tree:

\[
\{1,2,3,4,5,6,7,8\} \\
\{1,2,3,4\} \quad \{5,6,7,8\} \\
\{1,2\} \quad \{3,4\} \quad \{5,6\} \quad \{7,8\} \\
\{1\} \quad \{2\} \quad \{3\} \quad \{4\} \quad \{5\} \quad \{6\} \quad \{7\} \quad \{8\}
\]

- If \(a_i \) is a \(\phi \)-heavy hitter; all ancestors \(D \) of \(\{i\} \) have \(a[D] \geq \phi |a|_1 \)
Heavy Hitter Application

• Internet traffic
• Want to find dominant IP addresses
 – Originating or receiving large proportion of total traffic
 – Large website, DDOS victim
• Exploit natural tree structure of IP addresses based on prefixes
Counting distinct items in a stream

• Data stream \{a_1a_2a_3\ldots a_n\} of length n
• How many distinct values: m

• Applications
 – Number of distinct items as summary statistics of dataset
 – Useful for computing resource requirements
 – Compare values over different time windows, detect changes
Networking Applications

- Data stream = keys of packet stream
- #distinct items = #distinct keys = #flows
- Detecting distributed Denial of service attacks
 - Increase in number of SrcIP
- Detecting port scanning
 - Increase in number of DstPrt
Counting distinct elements in a stream

- Data stream \(\{a_1a_2a_3\ldots a_n\} \) of length \(n \)
- How many distinct values: \(m \)
- Exact approach:
 - Maintain hash table
 - Each arrival \(a \), store 1 in \(\text{hash}(a) \)
 - \(m = \#\text{entries in hash table} \)
- Storage cost: \(O(m) \)
- Approximate answer with less storage?
Probabilistic counting of distinct elements

- Data stream $S = \{a_1, a_2, a_3, \ldots, a_n\}$ of length n
- Hash $a \rightarrow h(a)$ uniform in $(0,1]$
- m distinct values $\rightarrow m$ hashes IID uniform in $(0,1]$
- Maintain minimum value $H = \min_{a \in S} \{ h(a) \}$
- Streaming
 - Initialize $H = 1$
 - Foreach a; $H = \min\{H, h(a)\}$
- Estimate $m^* = 1/H$
Probabilistic counting

- By using hash $h(a)$ only distinct element are relevant
 - Multiple occurrences of same element get hashed to the same value
- More distinct values \rightarrow Minimum tends to be closer to 0

- Consider $H_m = \min_{i=1,..,m} h_i$
 - Minimum of m IID Unif[0,1] h_i

- CCDF $\Pr[H_m > x] = \Pr[\text{all } h_i > x] = (1-x)^m$

- PDF of H_m is $m(1-x)^{m-1}$: $E[H_m] = 1/(m+1)$

- Using $m^* = 1/H$ is correct in some average sense
Probabilistic counting: bounds

- $m^* = \frac{1}{H_m}$ with $H_m = \min_{i=1,\ldots,m} h_i$

- Bound the probability that m^* is lower than m by a factor k

\[
\Pr[m^* / m \leq 1/k] = \Pr[\min_{i=1,\ldots,m} h_i \geq k/m] \\
\leq \Pr[h_i \geq k/m]^m \\
= (1 - k/m)^m \\
\leq \exp(-k) < 1/k
\]
Probabilistic counting: bounds

- \(m^* = \frac{1}{H_m} \) with \(H_m = \min_{i=1,\ldots,m} h_i \)

- Bound the probability that \(m^* \) is higher than \(m \) by a factor \(k \)

\[
\Pr\left[\frac{m^*}{m} \geq k \right] = \Pr\left[\min_{i=1,\ldots,m} h_i \leq \frac{1}{(km)} \right] \\
\leq 1 - \Pr\left[\min_{i=1,\ldots,m} h_i > \frac{1}{(km)} \right] \\
= 1 - \Pr[h_i > \frac{1}{(km)}]^m \\
= 1 - (1 - \frac{1}{(km)})^m \\
\leq \frac{1}{k}
\]

- Summary: \(\Pr[m^* \text{ over or under by factor } k] \) (each) \(\leq \frac{1}{k} \)
Discrete Probabilistic Counting in Practice

- Hash function h into $[0,2^w -1]$, i.e. w bit binary numbers
- For each a in S, let $z(a) = \text{number of leading 0's of } h(a)$
- Define $Z = \max_a z(a)$
- Estimate $m^* = 2^Z$

Diagram:

- $h(a) = 0001...$ $z(a) = 3$
- $0 \rightarrow 2^{w-1}$
Discrete Probabilistic Counting in Practice

- $h(a)$ uniform in $[0, 2^w - 1]$ → bits of $h(a)$ IID with $\Pr[1] = \Pr[0] = 1/2$
- $\Pr[z(a) \geq r] = \Pr[\text{first } r-1 \text{ bits are 0}] = 2^{-r}$

- Let $x_a(r)$ be the indicator of the event $\{z(a) \geq r\}$:
 $$x_a(r) = 1 \text{ if } z(a) \geq r, \ 0 \text{ otherwise}$$

- Will need:
 $$\mathbb{E}[x_a(r)] = \Pr[z(a) \geq r] = 2^{-r} \text{ and } \text{Var}(x_a(r)) = 2^{-r} (1 - 2^{-r})$$

- Define $X(r) = \sum_a x_a(r)$:

 #distinct elements that lie in leftmost $1/2^r$ of $[0, 2^w - 1]$
Discrete Probabilistic Counting: Lower Bound

- \(\mathbb{E}[x_a(r)] = \mathbb{P}[z(a) \geq r] = 2^{-r} \) and \(\text{Var}(x_a(r)) = 2^{-r}(1-2^{-r}) \)
- \(X(r) = \sum_a x_a(r) : \text{#distinct elements in leftmost} \ 1/2^r \text{ of } [0,2^w-1] \)
- For \(c > 1 \), \(m^* > c \ m \) if \(2^{z(a)} > cm \) for some \(a \), i.e.,

\[
\text{if } X(r) \geq 1 \text{ for some } r \text{ such that } 2^r > cm
\]

\[
\mathbb{P}[X(r) \geq 1] \leq \mathbb{E}[X(r)] \quad \text{(Markov)}
\]

\[
= \sum_a \text{distinct} \ \mathbb{E}[x_a(r)]
\]

\[
= m / 2^r
\]

\[
< 1/c
\]

- Conclusion: \(\mathbb{P}[m^* > c \ m] < 1/c \)
Discrete Probabilistic Counting: Upper Bound

• $E[x_a(r)] = \Pr[z(a) \geq r] = 2^{-r}$ and $\Var(x_a(r)) = 2^{-r} (1 - 2^{-r})$

• $E[X(r)] = mE[x_a(r)] = m2^{-r}$; $\Var[X(r)] = m\Var[x_a(r)] \leq m2^{-r} = E[X(r)]$

• For $c > 1$, $m^* < m/c$ if $2^{z(a)} < m/c$ for all a, i.e.,

 if $X(r) = 0$ for some r such that $2^r < m/c$

 \[
 \Pr[X(r) = 0] = \Pr[|X(r) - E[X(r)]| \geq E[X(r)]] \\
 \leq \frac{\Var(X(r))}{E[X(r)]^2} \quad \text{(Chebychev)} \\
 \leq \frac{1}{E[X(r)]} \\
 = \frac{2^r}{m} < \frac{1}{c}
 \]

• Conclusion: $\Pr[m^* < m/c] < 1/c$
Better estimates through combination

• Single m^* is quite noisy
 – m^* is always a power of 2
 – Markov inequality is quite weak in general
• Improvement
 – Combine multiple m^* computed in parallel with different hash functions
• Use median?
 – Median of s estimates $\{m^*_{1}, m^*_{2}, \ldots, m^*_{s}\}$ is still a power of 2
• Use mean?
 – m^* does not have good averaging properties
 – Probability to double m^* from some $2^{z(a)}$ is $\frac{1}{2}$
 • Get contributions to $E[m^*]$ out to w
 • If we had unlimited bits then $E[m^*]$ would be infinite
• Best of both worlds
 – Compute median of multiple averages
 • Averages are not restricted to powers of two, median omits large values
References
