ECEN 689
Special Topics in Data Science for Communications Networks

Nick Duffield
Department of Electrical & Computer Engineering
Texas A&M University

Lecture 16
Delay Tomography and Topology Inference
Delay Inference

• Packets incur latency in traversing links
 – propagation delay on links
 – queueing and processing delays
• Delay is cumulative along paths
• Network with link delays \{X_i\} and path delays \{D_p\}
• Formally:
 – \(D_p = \sum_i A_{pi} X_i\) where \(A = [A_{pi}]\) is incidence matrix of links over paths
Delay Inference

• \(D_p = \sum_i A_{pi} X_i \)

• Interpretations:
 1. \(X_i \) represent common distribution of delays on all packets traversing \(i \)
 • sample values for different packets differ, e.g. on different paths
 2. \(X_i \) are common delay values experienced on any path \(p \) traversing
 • multicast packet
 3. \(X_i \) represent mean values
 • Invert linear system \(D = A.X \) to recover \(X \) from \(D \)?
Delay Model for Multicast Trees

- **Tree model**
 - known tree $G=(V,L) =$ (nodes, links)
 - source multicast probes from root
 - receiver nodes at leaves R

- **Delay model**
 - Probe delay X_k on link k
 - Treat loss as infinite delay
 - Independent delays
 - Between links, probes
 - Assume finite 4th moments of X_k
 - for non-lost packets
Internal vs. External Characteristics

- Cumulative delay from root to node k
 \[D_k = \sum_{i \text{ ancestor of } k} X_i \]

- Aim
 - characterize link delays X_k in terms of cumulative delays D_k to leaves

- Data
 - Multicast n probes from source
 - Data $D = \{ D^i(j): j \in \mathbb{R}, i = 1, \ldots, n \}$

- Infer
 - Link and cumulative delay variance from data D
Cumulative Delay Variance on Tree

- Subtree spanning root 0, and receivers 2,3
 - node 1 = 2 \land 3: closest ancestor to nodes 2,3

- End-to-end delay covariance
 \[\text{Cov}(D_2, D_3) = \text{E}[D_2 D_3] - \text{E}[D_2] \text{E}[D_3] \]
 - Captures common variability of end-to-end delays

- Theorem
 - \[\text{Cov}(D_2, D_3) = \text{Var}(D_1) \]

- Covariance of end-to-end delays on path 0 \rightarrow 2 and 0 \rightarrow 3 = delay variance on shared path 0 \rightarrow 1
Cumulative Delay Variance

• Proof of Theorem

\[
\text{Cov}(D_2, D_3) = \text{Cov}(D_1 + (D_2 - D_1), D_1 + (D_3 - D_1))
\]

\[
= \text{Cov}(D_1, D_1) + \text{Cov}(D_1, D_3 - D_1) + \text{Cov}(D_2 - D_1, D_1) + \text{Cov}(D_2 - D_1, D_3 - D_1)
\]

\[
= \text{Cov}(D_1, D_1)
\]

\[
= \text{Var}(D_1)
\]
Characterizing Link Delay Variance

• \(X_4=\text{delay on link (1,4)}\)

• Delay cumulative along path
 – \(D_4 = D_1 + X_4\)

• Expand delay variance
 – \(\text{Var}(D_4) = \text{Var}(D_1) + \text{Var}(X_4) + 2\text{Cov}(D_1,X_4)\)

• Re-express link delay variance
 – In terms of end-to-end delay covariance

\[
\text{Var}(X_4) = \text{Var}(D_4) - \text{Var}(D_1) \\
= \text{Cov}(D_5,D_6) - \text{Cov}(D_2,D_3)
\]
Estimation from Data

- Unbiased Estimator of \(\text{Var}(X_1) \)
 - from delays at leaves 2 and 3
 \[v(2,3) = (n-1)^{-1}(\sum_i D_2(i)D_3(i))^{-1} \sum_i D_2(i) \sum_i D_3(i) \]

- Such estimators not unique
 - e.g. from delays at leaves 4 and 5
 \[v(4,5) = (n-1)^{-1}(\sum_i D_4(i)D_5(i))^{-1} \sum_i D_4(i) \sum_i D_5(i) \]

- Convex family
 - of unbiased estimators
 - in form \(\sum_{i,k} \mu(i,k) v(i,k) \),
 - with \(\mu(i,k) > 0, \sum_{i,k} \mu(i,k) = 1 \)

- Theorem
 - each such estimator is consistent
 - converges to true value as \#probes \(\to \infty \)
Minimum Variance Estimation

• General Estimator $\Sigma_{ik} \mu(i,k) v(i,k)$
 – adapt $\mu(i,k)$ to data:
 • to minimize variance of estimated variance
 • to de-emphasize contribution of high variance paths
 • increase convergence rate

• Example: estimate $\text{Var}(D_1)$
 – combine $v(2,3), v(3,4), v(4,2)$
 – de-emphasize $\mu(2,3), \mu(2,4)$

• Minimum Variance Estimator
 – select $\mu = C^{-1}.1/1.C^{-1}.1$
 • C = (estimated) covariance matrix of $v(i,j)$
 • Finite 4th moment property used here

• Contrast Uniform Estimator
 – $\mu(i,k) = \text{constant}$
Estimator Convergence

Model simulation, 8-leaf binary topology
- faster convergence for minimum variance estimator
Path Delays: Filtering Propagation Delay

- **Setting:** single multicast tree
 - Generalizable to “forest” of trees as before

- **Path delays**
 - Total = Propagation + Queueing
 - Focus on queuing delay
 - Normalize n path delay measurement \(\{ D_i(k): i=1,\ldots,n \} \) to node k
 - \(D_i(k) \rightarrow D_i(k) - \min_i D_i(k) \)
 - Subtract off minimum observed delay
 - Assume some packet incurs no queuing delay
Link Delay Model

• Link delay model
 – Quantize delay to finite set of value \(Q = \{0, q, 2q, \ldots, Bq, \infty\} \)
 – Bins \([0,q/2),[q/2,3q/2),\ldots,[(B-1/2)q,(B+1/2)q),[(B+1/2)q,\infty)\} \)

• Discretized distribution of delay \(X_i \) on link \(i \)
 – \(\Pr[X_i = d] = \alpha(i,d) \), \(d \in Q \)

• Assume delays independent between packets and links
Complete Data Likelihood Function and EM

- **Complete data**
 - Queueing delays at all nodes: \(X = \{X(k): k \in V\} \)
 - Summarize as \(n(k,d) = \# \text{packets experience delay } d \text{ on link } k \)

- **Observed data**
 - Path delays at receivers: \(D = \{D(k): k \in R\} \)

- **Complete Data log-Likelihood**

\[
\log L^c_{\alpha}(X) = \sum_{k \in V} \sum_{d \in Q} n(k,d) \log \alpha(k,d)
\]

- **MLE**: \(\alpha(k,d) = \frac{n(k,d)}{\sum_{d \in Q} n(k,d)} \)

- **EM algorithm**
 - Replace \(n(k,d) \) with \(E_{\alpha^*}[n(k,d) \mid D] \)

- Computation significantly more complex than loss case

- Generalizes to multiple tree case
Topology Inference
Topology Inference

• Problem
 – given
 • multicast probe source
 • receiver traces (loss, delay, …)
 – identify (logical) topology

• Motivation
 – topology may not be supplied in advance
 – grouping receivers for multicast flow control
General Approach to Topology Inference

• Given model class
 – tree with independent loss or delay

• Find classification function of nodes k which is
 – increasing along path from root
 – can be estimated from measurements at $R(k) = \text{leaves descended from } k$

• Examples
 – $1 - A_k = \text{Prob[probe lost on path from root 0 to } k]$
 – mean of delay Y_k from root to node k
 – variance of delay Y_k from root to node k

• Build tree by recursively grouping nodes $\{r_1, r_2, \ldots, r_m\}$
 – to maximize classification function on putative parent
Example: Loss-based Topology Inference

- Given set of receivers R, but unknown tree
 - each $j \in R$: set $\gamma_j = \text{Prob}[\text{probe received at node } j]$

- For each subset $S \subseteq R$
 - set $\gamma_S = \text{Prob}[\text{probe received at some node } j \in S]$
 - let A_S be unique solution $> \gamma_S$ to $(1 - \gamma_S/A_S) = \prod_{j \in S}(1 - \gamma_j/A_S)$

- Select maximal $S \subset R$ that minimizes A_S
 - join $\{S\}$ to set of vertices (initially just R)
 - join $\{(S,j), j \in S\}$ to set of links (initially empty)
 - set $R = (R\setminus S) \cup \{S\}$

- Iterate till $\#R = 1$

- Theorem: algorithm reconstructs tree when $0 < \gamma_k < 1$
 - using estimates γ'_k: $\text{Pr}[\text{misclassification}] \to 0$ as $\#\text{probes} \to \infty$
Correlation and Unicast Tomography
Illustrative Example: 2 Leaf Tree

• Packet Transmission Model
 – traverse link k independently with prob. α_k

• Method
 – source “stripes” packets to receivers
 1 = packet received, 0 = not received
 – initially assume single packet loss rates uniform across stripe
 – joint end-to-end transmission probabilities
 • $p(ij) = \text{Prob}[i \text{ at receiver } L, j \text{ at receiver } R]$

• Aim
 – estimate the α_k from the $p(ij)$
A Thought Experiment

• Suppose
 – perfect loss correlation on link C
 – in given stripe:
 • left and right packets, or neither, reach C

• Inference
 – Left packet reaches L ⇒ right packet reaches C
 \[\alpha_R = \text{Prob}[\text{right reaches R | right reaches C}] \]
 \[= \text{Prob}[\text{right reaches R | left reaches L}] \quad \text{(perfect correlation)} \]
 \[= \frac{p(11)}{p(11)+p(10)} \]

• Similarly:
 \[\alpha_L = \frac{p(11)}{p(11)+p(01)}, \quad \alpha_C = \frac{(p(11)+p(10))(p(11)+p(01))}{p(11)} \]

• Consequence
 – Could estimate \(\alpha \) from measured end-to-end probabilities \(p \)

• Statistically: like estimation from multicast probes
Imperfect Correlations

• Loss correlations are imperfect
 – $\beta = \text{Prob}\left[\text{left reaches } C \mid \text{right reaches } C\right] \leq 1$

• If perfect correlation:
 – $p(11) = \alpha_C \alpha_L \alpha_R$

• If imperfect correlation:
 – $p(11) = \alpha_C \alpha_L \alpha_R \beta$

• Under “standard estimator”
 – substitute probabilities p by observed frequencies
 • as if $\beta = 1$, i.e., incorrect assumption of perfect correlations
 – $\alpha_C(\text{est}) = \alpha_C \beta$ \hspace{1cm} $\alpha_L(\text{est}) = \alpha_L / \beta$ \hspace{1cm} $\alpha_R(\text{est}) = \alpha_R / \beta$

• Standard estimator
 – underestimates transmission rate on common link
 – overestimates transmission rate on leaf links
Extend Method?

• Account for and infer conditional probability β
• Problem: non-identifiability
 – too many parameters: $\alpha_C, \alpha_R, \alpha_L, \beta$
 – too few independent end-to-end probabilities $p(10), p(01), p(11)$
• Reduce effective number of independent parameters
 – link α_C and β through queueing model
 – Bayesian inference from prior distribution for (α, β)
 – yields distributional estimate for (α, β)
• ML estimation + EM algorithm
 – generate approximating sequence (α^n, β^n)
 – raises new issues
 • estimator bias, sensitivity to initial (α^0, β^0)
Standard Estimator Revisited

• **Standard estimator most accurate when** $\beta \approx 1$
 – an uncontrolled assumption
 – expect better observance if:
 • inter-packet time < duration of congestion events
 – back-to-back packets

• **Stripe extension**
 – use more complex stripe pattern
 – event selection
 • infer only from events which favor $\beta \approx 1$
 – for an appropriate notion of conditional transmission rate

• **Path testing**
 – determine how closely $\beta \approx 1$
 • along end-to-end paths in the Internet
Extended Striping and Coalescence

• Extended striping
 – send multiple times to same receiver

• Conditional probabilities
 – $\beta(1|2\ldots n)$ = conditional prob. for packet 1 to reach node C, given packets 2,3,…,n all reach C

• Coalescence
 – idea:
 • packet transmission more likely given longer bursts
 – formalization:
 $\beta(1|2\ldots n) \leq \beta(1|2\ldots n+1)$
 – example:
 • transmission in the M/M/1/K queue is coalescent
Inference, Coalescence and Bias

• Utilizing coalescence
 – condition on event \{n\} = reception of packets 2,3,…,n
 – if correlations were perfect:
 \[\alpha_L = \frac{p(1\{n\})}{p(1\{n\}) + p(0\{n\})} \]

• Reduction in estimator bias
 – packet 1 more likely to have reached C for larger n
 • analog of standard estimator becomes more accurate
 – \[\alpha_{L\text{ (est)}} = \frac{\alpha_L}{\beta(1|2…n)} \]
 • coalescence + larger n \Rightarrow larger \beta \Rightarrow smaller bias
Inference on General Networks

• Estimation of loss rate A_k
 – along path from source to k
• Stripe template $S(i,j)$, e.g.,
 – stripe 1 packet to receiver i,
 – then n packets to receiver j
• Estimate A_k
 – by $A_k(i,j)$ from stripe $S(i,j)$
 • receivers (i,j) descended through different children of k
 – lightweight
 • pick one such pair (i,j) for each node k
 – exhaustive
 • average $A_k(i,j)$ over all suitable pairs (i,j)
• Recover link transmission rates
 – $\alpha_k = A(k)/A(\text{parent}(k))$
Path Testing

• Using standard estimator
 – relative error of estimated transmission rate α_1 is β
 • if $\beta \approx 1$:
 – standard transmission rate estimator is accurate
 – relative error of estimated loss rate $1-\alpha_1$ is $\alpha_1 (1-\beta)/(1-\alpha_1)$
 • standard loss rate estimator is accurate (assume low loss: $\alpha_1 \approx 1$)
 if $(1- \beta) < (1-\alpha_1)$ i.e. conditional loss < marginal loss

• Operational criterion for expected inference accuracy
 – stripe packets to single endpoint
 • if conditional loss < marginal loss on path
 • then typically conditional loss < marginal loss on lossiest links
 – path characteristic (assume low loss: $\alpha \approx 1$)
 • $\text{conditional_loss/marginal_loss}$
 – relative error in inferred loss due to imperfect correlations
 – test for coalescence along complete paths
Network Experiments
Measured Internet Path Properties

• **Aim**
 – is stripe based inference expected to be effective?

• **Internet paths**
 – experiments across 28 paths

• **Transmission Probabilities**
 – conditional > marginal

• **Coalescence**
 – $\beta(1|23) > \beta(1|2)$ in almost all cases (also for longer stripes)

• **Path characteristic**
 – relative error = conditional_loss/marginal_loss
 • median: 0.12 for 2 packet stripes, 0.10 for 3 packet stripes

• **Conclusion**
 – expect inference accurate for lossier links on these paths
Network Simulations

- **ns simulation**
 - 39 node topology, TCP/UDP background traffic
 - 1 µsec inter-packet time, 16ms inter-stripe time
 - infer over various subtrees,
 - e.g.
Conditional Probabilities and Stripe Length

- Conditional probabilities
 - link transmission
 - increase with stripe length
 - expect better inference accuracy

- Largest effect:
 - $2 \rightarrow 3$ packet stripe
 - Marginal improvement for $3 \rightarrow 4$ packet stripe

Scatter plot of $(\text{marginal, conditional})$