ECEN 689
Special Topics in Data Science for Communications Networks

Nick Duffield
Department of Electrical & Computer Engineering
Texas A&M University

Lecture 5
Optimizing Fixed Size Samples
Sampling as a Mediator of Constraints

Data Characteristics
(Heavy Tails, Correlations)

Resource Constraints
(Bandwidth, Storage, CPU)

Sampling

Query Requirements
(Ad Hoc, Accuracy, Aggregates, Speed)
Why Summarize (ISP) Big Data?

• When transmission bandwidth for measurements is limited
 – Not such a big issue in ISPs with in-band collection
• Typically raw accumulation is not feasible (even nation states)
 – High rate streaming data
 – Maintain historical summaries for baselining, time series analysis
• To facilitate fast queries
 – When infeasible to run exploratory queries over full data
• As part of hierarchical query infrastructure:
 – Maintain full data over limited duration window
 – Drill down into full data through one or more layers of summarization
The need to limit sample volume
Fixed Size Sample

- Given N objects, select $k < N$ objects uniformly at random
 - Each subset of k objects should be equally likely
- One way: uniformly sample from N, k times w/o replacement

1/N
1/(N-2)
1/(N-3)

k objects selected
Fixed Size Stream Sample: Reservoirs

• Stream constraint: see each item once
 – Discard permanently if not selected

• Assume reservoir of capacity k items available
 – Reasonable: $k = \text{final sample size}$

• Can provisionally include items from stream in reservoir
 – Take first k items w.p. 1

• Can discard later to select different items later in stream

$k = 3$
Reservoir Sampling in Practice

How to achieve uniform sampling distribution?
No need to know stream size in advance

• Include first k items w.p. 1
• Include item $n > k$ w.p. $p_n = k/n$, $n > k$, if included: evict one item
 – Pick j uniformly from $\{1,2,\ldots,n\}$
 – If $j \leq k$, swap item n into location j in reservoir, discard replaced item

• Neat proof shows the uniformity of the sampling method:
 – Let $S_n =$ sample set after n arrivals

Previously sampled item: induction
$m \in S_{n-1}$ w.p. $p_{n-1} \Rightarrow m \in S_n$ w.p. $p_{n-1} \times (1 - p_n / k) = p_n$

New item: selection probability
$\text{Prob}[n \in S_n] = p_n := k/n$
Reservoir Sampling: Skip Counting

• Simple approach: check each item in turn
 – $O(1)$ per item:
 – Fine if computation time < interarrival time
 – Otherwise build up computation backlog $O(N)$

• Better: “skip counting”
 – Find random index $m(n)$ of next selection > n
 – Distribution: $\text{Prob}[m(n) \leq m] = 1 - (1-p_{n+1})*(1-p_{n+2})*…*(1-p_m)$

• Expected number of selections from stream is
 $$k + \sum_{k<m\leq N} p_m = k + \sum_{k<m\leq N} k/m = O(k \left(1 + \ln \left(\frac{N}{k} \right) \right))$$

• There is algorithm with this average running time
IPPS Stream Reservoir Sampling

- Each arriving item:
 - Provisionally include item in reservoir
 - If \(m+1 \) items, discard 1 item randomly (same as include \(m \) items randomly)
 - Choose inclusion probabilities to be previous IPPS
 - Calculate threshold \(z \) to include \(m \) items on average: \(z \) solves \(\sum_i p_z(x_i) = m \)
 - Discard item \(i \) with probability \(q_i = 1 - p_z(x_i) \)
 - Adjust \(m \) surviving \(x_i \) with Horvitz-Thompson \(x'_i = x_i / p_i = \max\{x_i, z\} \)

Example: \(m=9 \)

![Diagram showing the process of IPPS Stream Reservoir Sampling](image)
Computation in IPPS Stream Sampling

• “Calculate threshold z to include m average items: z solves $\Sigma_i p_z(x_i) = m$”?

• Weight order: $x_1 \leq x_2 \leq \ldots \leq x_n$. Any z: small items: $x_i \leq z$; Large $x_i > z$

• If $x(t)$ is a small item, then:

 $m = \Sigma_i p_z(x_i) = \Sigma_i \min\{1, x_i / z\}$
 (implicit definition of z, using form of p_z)

 $\leq \Sigma_{i \leq t} x_i / z + (m+1 - t)$
 ($p_z(x_i) \leq 1$ for the $m+1 - t$ terms $i > t$)

 $\leq \Sigma_{i \leq t} x_i / x(t) + (m+1 - t)$
 ($x(t)$ small and hence $\leq z$)

• In other words: $\Sigma_{i \leq t} x_i / x(t) \geq t-1$

• Largest possible index t for small item:

 $t^* = \max\{t: \Sigma_{i \leq t} x_i / x(t) \geq t-1\}$

• Then find z from $\Sigma_{i \leq t^*} x_i / z = t^*-1$ (why?)

• How to find t^*?
How to find t^*?

- $t^* = \max\{ t: \sum_{i\leq t} x(i) \cdot x(t) \geq t-1 \}$

- Exercise:
 - show $g(t) = \sum_{i\leq t} x(i) / x(t) - t - 1$ is nonincreasing in t.

- Show that this makes t^* easier to find
Monotonic Functions

• Searching for changepoints
 – f is binary function on \{1,2,\ldots,n\}: f(t) is either 0 or 1
 – f is monotonic: for some \(t^* \), \(f(t) = 1 \) if and only if \(t > t^* \)
 – Example:
 \[f(t) = 0 \text{ if } \sum_{i \leq t} x(i) / x(t) \geq t-1; \]
 \[f(t) = 1 \text{ if } \sum_{i \leq t} x(i) / x(t) < t-1; \]
 \[t^* = \max\{t: f(t) = 0\} = \max\{ t: \sum_{i \leq t} x(i) / x(t) \geq t-1\} \]

• Task
 – Find changepoint \(t^* \)

• Simple approach:
 – inspect \(f(t) \) for \(t = 1,2,\ldots, t^* \) = last \(t \) for which \(f(t) = 0 \)
 – computational cost: \(O(n) \): might have to inspect all \(n \)
Binary Search for Changepoint

- **Initialize:**
 - Set t in center

- **Iterate (until can move t no further right):**
 - If \(f(t) = 1 \)
 - we know \(t^* < t \)
 - restrict attention to lower half subinterval, set t to its center
 - If \(f(t) = 0 \)
 - we know \(t^* \geq t \)
 - restrict attention to upper half subinterval, set t to its center

- \(t^* = t \)

- If h is number of halvings then \(2^h \sim n \)

- #iterations = number of halvings \(h = O(\log n) < O(n) \)
Need to generalize binary search

- Domain may be point subset of real numbers
 - E.g. set of weight x_i, not simply $\{1, 2, \ldots, n\}$
- Domain can change with time
 - Database insertions and deletions
 - For a given f, this can alter changepoint: need to locate again
- Need general way
 - To store/retrieve data points
 - That enables finding function changepoints
 - Abstracts the idea of binary search from any detailed setting
 - Is efficient
Introducing binary search trees

- Data structure to store and retrieve points in ordered set
 - e.g. numbers with order of “<”
- Points do not need to be added in any particular order
 - No presorting needed
- Tree like structure is very efficient
 - Stores $n=2^h-1$ items if depth h
 - Computational cost $O(\log n)$ to retrieve any item
 - We will use to locate changepoint of binary monotonic function
Storing in a Binary Search Tree

• Storing an ordered set, e.g., \{17, 4, 6, 23, 36, 4\} with > order
 – Store first element at root” 17
 – Pass further elements down tree
 • To left child if element ≤ child
 • To right child if element > child

• Tree is depth \(O(\log m)\) for \(m\) items
• Computational complexity to add, delete or retrieve item is \(O(\log m)\)
• Binary search easy: go left/right until found, \(O(\log m)\) steps
• Need to **rebalance**: maintain bounded depth (i.e. approx. symmetry)
Search on a Binary Tree

• Search for some node (and whatever information attached)
 – say node 9
• Start at root
• Iterate until found:
 – Branch left if $9 \leq \text{node}$
 – Branch right if $9 > \text{node}$

```
4  
 |  
 |  
4
```

```
6
 |
|
 |
4
```

```
17
 |
|  
|  
9
```

```
23
 |
|  
|  
36
```

```
25
 |
|  
|  
9
```

```
9
 |
|  
|  
Found node 9!
```

Found node 9!
Monotone Functions and Binary Search Tree

- Monotone function \(f \) on nodes:
 - \(f(\text{node}_1) \leq f(\text{node}_2) \) if and only if \(\text{node}_1 < \text{node}_2 \)
 - Example: \(f(\text{node}) = \) weight stored at node

- Monotone binary function
 - Takes values 0 or 1
 - Seek \(\text{node}^* \) = largest node with \(f(\text{node}) = 0 \)
 - Example: largest node with weight \(\leq 10 \)
 - Happens to be 9: not known at start
 - \(f(\text{node}) = 0 \) if weight \(\leq 10 \), 1 otherwise

- Start at root and iterate until can't move further right:
 - if(\(f(\text{node}) = 1 \)) {
 node > \(\text{node}^* \): so branch left
 }
 - if(\(f(\text{node}) = 0 \)) {
 node \(\leq \) \(\text{node}^* \): so branch right
 }
 - \(\text{node} = \text{node}^* \)

\[
\begin{align*}
\text{node} & = 17 \\
\text{node}^* & = 9
\end{align*}
\]

- \(f(17) = 1 \)
- \(f(4) = 0 \)
- \(f(6) = 0 \)
- \(f(9) = 0 \)
- \(f(25) = 0 \)
- \(f(36) = 0 \)
Back to IPPS: maintaining partial sums $\sum_{i \leq t} x_{(i)}$

- **Insert:** each node $x_{(i)}$ maintains partial sums $S_{(i)}$ of weights $x_{(j)} \leq x_{(i)}$ that traverse it
- **Recovery:** from $x_{(i)}$ add up partial sums $S_{(j)}$ from all nodes $x_{(j)} \leq x_{(i)}$ on path back to root
- **Weight of items ≤ 25:**
 $25+23+17+4+6+4+9$
- **Weight of items ≤ 9:**
 $9+6+4+4$
The Iteration and its Computational Cost

• Current reservoir of unbiased estimates, threshold z
 – Reservoir maintained in two BSTs;
 • One for small items ($x_i \leq z$) and large ($x_i > z$)
 • Maintains partial sums for number and total weight of items $\leq x_i$

• Insert new weight
 – Binary tree search to find $t^* = \max \{ t : \Sigma_{i=t} x(i) / x(t) \geq t-1 \}$
 • Find $\Sigma_{i=t} x(i)$ and t by adding up appropriate partial sums for weights and counts
 – Compute new threshold z from $\Sigma_{i=t^*} x(i) / z = t^*-1$
 – Transfer items between small and large BSTs as needed

• Discard one item at random using discard probabilities
 – Generate random r uniformly on $[0,1]$
 – Find smallest $d \leq t^*$ such at $\Sigma_{i=d} (1 - x(i) / z) \geq r$
 • Binary search on small items: sum is function of counts and weight sums

• Basic computational takeaway
 – Computing in BST gives $O(\log m)$ complexity per arriving item
 – Actually $O(\log \log m)$ averaged over m arrivals
Summary: IPPS Sampling on Data Streams

• Motivation
 – Computer networking: storing sampled flow records for later analysis

• Ingredients:
 – Probability/Statistics, Algorithms, Data structures

• Statistical properties
 – Statistically optimal trade-off between sampling size and variance

• IPPS stream reservoir sampling
 – Iterative algorithm that maintains only current unbiased estimates in fixed size reservoir of size m

• Implementation
 – Used binary search trees to get $O(\log m)$ computational cost per arrival
Additional references

• Binary trees in general:
 – Goodrich: Data Structures and Algorithms in Python. Ch. 8
 • TAMU Library, online
 – These notes describe insertion and search; BST also provide for
deletion, rebalance and other operations.

• IPPPS Stream Sampling:
 – Cohen et. Al., Efficient Stream Sampling for Variance-Optimal