ECEN 689
Special Topics in Data Science for Communications Networks

Nick Duffield
Department of Electrical & Computer Engineering
Texas A&M University

Lecture 6
Order Sampling
Order Sampling

- Approaches to sampling so far
 1. Event (e.g. sample or discard) has some probability p
 - E.g. parameter for packet sampling, or in IPPS
 - Generate random r Uniform in $[0,1]$
 - Event occurs if $r \leq p$
 2. Distribution (e.g. of the skip in skip counting)
 - Generate random variate drawn from distribution

- Order Sampling
 - Generate a single random number r_i for each item i
 - Events, distributions implicitly indicated from the $\{r_i\}$
Order Sampling k from n items uniformly

- Each item i generates rank r_i independently from Unif[0,1]

- Order the items increasing in r_i and sample k smallest

- The distribution of \{${r_i}$\} is **permutation invariant**
 \[
 \Pr[r_1 \in A_1 , \ldots , r_n \in A_n] = \Pr[r_{\pi(1)} \in A_1 , \ldots , r_{\pi(n)} \in A_n]
 \]
 for any permutation π of \{1, \ldots, n\}

- Each selection of k objects is equally likely
 \[
 \Pr[\{r_1,\ldots,r_k\} < \{r_{k+1},\ldots,r_n\}]
 = \Pr[\{r_{\pi(1)},\ldots,r_{\pi(k)}\} < \{r_{\pi(k+1)},\ldots,r_{\pi(n)}\}]
 = \Pr[\{\pi(1),\ldots,\pi(k)\} \text{ sampled}]
 \]

- Desired result: uniform sampling
Reservoir Sampling via Order Sampling

- Stream of \(n \) objects, reservoir capacity \(m \)
- Each arriving item \(i \), generate rank \(r_i \) in \(\text{Unif}[0,1] \)
- Take first \(m \) items
- Each subsequent item
 - Provisionally add to reservoir
 - Discard largest rank item

Example:
\(m=9 \)

\[\begin{array}{cccccccccc}
\text{x1} & \text{x3} & \text{x9} & \text{x7} & \text{x2} & \text{x8} & \text{x1} & \text{x4} \\
\end{array}\]
Computational Properties of Order Sampling

• Order Sampling can be simply parallelized
 – Divide data into subsets and order sample k items from each subset
 – Take union of outputs, then order sample k items from union

• Previous slide suggested maintaining items in linear order
 – Computationally expensive: O(m) per insertion if reservoir size m

• Only need abstract properties of a priority queue
 – Each item i is equipped with a priority r_i that does not change
 – Items can be inserted in the queue
 – The item of highest priority can be retrieved from the queue
 • Or equivalently, lowest priority

• There are more efficient a priority queue implementations
 – Well known: a heap, which is $O(\log m)$ per insertion, removal
Heaps

- Heap (low priority version)
 - Each node has at most two children
 - Parents have lower priority than children
 - Each depth of is filled in order (top to bottom, left to right)

- Two possible heaps storing the numbers \{1,..9\}

- Heaps of same size have same topology; balanced binary
Heap Insertion

- Insert new item at next free position
- Bubble up by swapping with until a heap is obtained
- Have to do at most h swaps, where \(h = O(\log n) \) is tree depth

- Insert(8)
Heap Removal

• Only the root node is removable
 – Lowest priority item when implementing a (low)-priority queue
• Remove root node
• Move node in last position to root
• Bubble down by swapping with smaller child until heap formed
 – Takes at most h swaps, where h = O(log n) is tree depth
Order sampling in databases

- Table of records \(\{i, k_i \}, i=1,...,n \), \(k_i \) = column values of record \(i \)
- Generate ranks, but sample later when needed
- Initialization
 - Generate \(r_i \) in \(\text{Unif}[0,1] \) for all \(i \)
 - Sort the records increasing order in \(r_i \)
 - How to do this using a heap? What is the computational cost?
- Sampling
 - Want \(m \) samples from selection subset \(S \subset \{1,2,...,n\} \)
 - Take \(m \) lowest rank matching records in \(S \)
- Reuse: repeat for any \((S,m) \) using same order
- Costs:
 - One time sort cost + sequential access
Weighted Order Sampling

• Suppose each item i has a non-uniform weight x_i
• Can we do **weighted order sampling**?
• General idea:
 – Choose rank r_i as function $R(x_i, u_i)$ of weight x_i and random u_i in $\text{Unif}[0,1]$
• Different choice of rank function R can be used to realize different statistical objectives:
 – Desired sampling probability of i as a function of x_i
• We’ll look at two cases
 – “Weighted random sampling”: yields sampling probability $x_i / \Sigma_i x_i$
 – “Priority sampling”: sampling similar to IPPS
A weighted sampling scheme

- \(n \) items with weights \(\{x_1, x_2, \ldots, x_n\} \) and sum \(X = \sum x_i \)
- Consider weighted sampling of \(k < n \) items w/o replacement
- Sample 1 item in each of \(k \) rounds
 - 1\(^{st} \) round: sample \(i \) with \(p_i = \frac{x_i}{X} \)
 - 2\(^{nd} \) round: sample \(j \) with \(p_{ij} = \frac{x_j}{X - x_i} \), conditional on sampling \(i \) in 1\(^{st} \)
 - Generally: subtract off weights of previously sampled items from \(X \)

\[
p_i = \frac{x_i}{X} \quad p_{ij} = \frac{x_j}{X - x_i} \quad p_{ijm} = \frac{x_m}{X - x_i - x_j}
\]

\(k \) objects selected
“Weighted random sampling” via order

- n items with weights \{x_1, x_2, \ldots, x_n\}; sample k from n
- Order sampling with rank \(r_i = -\log(u_i)/x_i \)
- Pick k items of smallest rank
- Theorem: **same sampling distribution** as previous scheme
- Proof:
 1. CDF of \(r_i \) is \(F_i(y) = \Pr[r_i \leq y] = \Pr[u_i \geq \text{Exp}(-y x_i)] = 1 - \text{Exp}(-y x_i) \)
 In other words: \(r_i \) has exponential distribution with mean \(1/x_i \)
 2. For any j, \(\Pr[x_j \text{ selected first}] = \Pr[\text{item j has min rank}] = \int_{0}^{\infty} dF_j(y) \prod_{i \neq j} (1 - F_i(y)) = \int_{0}^{\infty} dy x_j e^{-yX} = \frac{x_j}{X} \)
 3. Due to memoryless property of exponential distributions, the \(\{r_i - r_j\} \) for \(i \neq j \), conditional on \(r_j \) being smallest, are independent Exponential[1/x_i]
 4. Recurse over remaining weights.
Priority Sampling

• Resembles an order sampling version of IPPS
 – Which rank function should be used to yield sampling probability
• Each item x_i has priority $z_i = x_i / r_i$ with r_i random $\text{Unif}(0,1]$
• Estimation
 – Let $z^* = (k+1)^{st}$ highest priority
 – Top-k priority items: weight estimate $x'_i = \max\{ x_i, z^* \}$
 – All other items: weight estimate $x'_i=0$
• Main result
 – x'_i is an unbiased estimator of x_i!
Priority Sampling & Unbiased Estimation

- Show that $E[x'_i] = x_i$ for any i.
- Let $A(z')$ denote the event that the k^{th} largest of the other priorities \{z_j: j\neq i\} takes the value z'
- Will show that $E[x'_i | A(z')] = x_i$, for any z', and so $E[x'_i] = x_i$
- Proof:
 - Suppose $z_i < z'$: then z_i is $< k^{th}$ largest priority, so is not sampled
 - Suppose $z_i > z'$: then z' is $(k+1)^{st}$ largest priority: $z' = z^*$
 - So
 \[
 \Pr[i \text{ sampled } | A(z')] = \Pr[z_i > z'|A(z')] = \Pr[r_i < x_i / z'] = \min\{1, x_i / z'\}
 \]
 Looks like IPPS but with a random sampling threshold z'
 - And
 \[
 E[x'_i | A(z')] = E[x'_i|i \text{ sampled, } A(z')] \Pr[i \text{ sampled } | A(z')] \\
 = \max\{x_i, \, z'\} \min \{1, x_i / z'\} \\
 = x_i
Variance and Covariance

• Priority sampling is not independent sampling
 – Fixed size: \(P[j \text{ sampled} | i \text{ sampled}] < P[j \text{ sampled}] \)
• But estimates have zero covariance!
 – \(E[x'_i x'_j] = x_i x_j \)
• Consequence: additive variance (like independent IPPS)
 – \(\text{Var}[X'(S)] = \text{Var}[\sum_{i \in S} x'_i] = \sum_{i \in S} \text{Var}(x'_i) \)
• Actually variance is difficult to compute explicitly, but:
 – Upper bound: \(\text{Var}[X'(S)] \leq X(S)^2/(k-1) \)
• Compare with IPPS
 – \(\text{Var}[X'(S)] \leq X(S)^2 / k \) slightly tighter
Priority Sampling in Databases

• One Time Sample Preparation
 – Compute priorities of all items, sort in decreasing priority, no discard

• Sample and Estimate
 – Estimate subset sum $X(S) = \sum_{i \in S} x_i$ by $X'(S) = \sum_{i \in S} x'_i$
 – Method: select items in decreasing priority order
Bounds on variance vs. computation cost

1. Variance bounded
 - $S' = \text{first } k \text{ items from } S$: relative variance bounded $\leq 1/(k-1)$
 - $x'_1 = \max\{ x_i, z^* \}$ where $z^* = (k+1)^{\text{st}} \text{ highest priority in } S$

2. Computation cost bounded
 - $S' = \text{items from } S \text{ in first } k$: execution time $O(k)$
 - $x'_1 = \max\{ x_i, z^* \}$ where $z^* = (k+1)^{\text{st}} \text{ highest priority}$