ECEN 689
Special Topics in Data Science for Communications Networks

Nick Duffield
Department of Electrical & Computer Engineering
Texas A&M University

Lecture 8
Count-Min Sketches
Data Stream Model

• Vector $a(t) = (a_1(t), a_2(t), \ldots, a_n(t))$, initially $a_i(0) = 0$ for all i

• Update $(i(t), c(t))$ for each t

• Update rule:

 $a_i(t) = a_i(t-1) + c(t)$ for $i = i(t)$
 $a_i(t) = a_i(t-1)$ for $i \neq i(t)$

• Example
 – Update at t is flow record arrival
 • $i(t)$ = flow key; $c(t)$ = bytes in flow;
 • $a_i(t)$ is cumulative bytes seen since 0 for key i
Count-Min Sketch: Structure

• Can we approximate the totals $a_i(t)$ in smaller memory?
• A Count-Min Sketch with parameters (ϵ, δ) is a two-dimensional array with d rows and w columns, and entries

$$\{K[i,j]: i=1,\ldots,d, j=1,\ldots,w\},$$ all initialized to 0

where $w = \text{ceil}(\epsilon / \epsilon)$ and $d = \text{ceil}(\log(1/\delta))$.

• The Count-Min Sketch is equipped with a family of d hash functions assumed pairwise independent:

$$h_1, \ldots, h_d : [1,n] \rightarrow [1,w]$$
Count-Min Update

• When \((i(t), c(t))\) arrives:

 add \(c(t)\) to the element at column \(h_j(i(t))\) in each row \(j\)

\[K[j, h_j(i(t))] += c(t) \text{ for } j = 1, 2, \ldots, d \]
Count-Min: Basic Idea

• If there were no hash collisions then after arrival \((i(t),c(t))\) would have
 – \(K[j, h_j(i)] = a_i(t)\) for each hash \(h_j\), \(j=1,...,d\)

• If hash collisions
 – \(h_j(i(s)) = h_j(i(t))\) for some \(s<t\), \(i(s)\neq i(t)\), and hash \(h_j\)
 – Hence \(K[j, h_j(i)] > a_i(t)\)

• Hash functions are independent, unlikely to all collide.
 – For so \(w\) and \(d\) large enough, very likely that \(\min_j K[j, h_j(i)] = a_i(t)\)
 – Reminiscent of Bloom Filter
Count-Min: Approximation

• Approximate a_i by $a_i' = \min_j K[j, h_j(i)]$ (omit time index)

• In row j: $K[j, h_j(i)] = a_i(t) + X_{i,j}$

 with $X_{i,j} = \sum a_k$ where sum is over k such that $h_j(i) = h_j(k)$

• $E[X_{i,j}] = \sum_k a_k \cdot \Pr[h_j(i) = h_j(k)]$

 $\leq |a| / w$

 $\leq |a| \varepsilon / 2$

 here $|a| = \sum_k a_k$

• $\Pr[X_{i,j} \geq \varepsilon |a|] \leq \Pr[X_{i,j} \geq 2 E[X_{i,j}]] \leq 1/2$ (Markov Inequ.)

• $\Pr[a_i' \geq a_i + \varepsilon |a|] = \Pr[X_{i,j} \geq \varepsilon |a|_1 \text{ all hash } j] \leq 1/2^d \leq \delta$
Count-Min: Summary for Point Queries

• (ε, δ) Count-Min Sketch
 – $w = \text{ceil}(\varepsilon / \varepsilon)$ rows and $d = \text{ceil}(\log(1/\delta))$ hash functions

• Bounds
 – Exact lower bound: $a'_{i} \geq a_{i}$
 – Probabilistic upper bound: $\Pr[a'_{i} \geq a_{i} + \varepsilon | a|] \leq \delta$

• Space used:
 – Size of array = $wd = O((1/\varepsilon) \log(1/\delta))$

• Computation cost for updates
 – Number of hash functions $d = O(\log(1/\delta))$

• Computation cost for estimates
 – Number of rows $d = O(\log(1/\delta))$
Count-Min: Other Queries

• Inner product queries: $a \cdot b = \Sigma_i a_i b_i$

• Range queries: $\Sigma_{r=1}^s a_i$
Count-Min: Inner Product Query

• Want $a \cdot b = \sum_i a_i b_i$

• Maintain separate Count-Min sketches K_a and K_b

• Row j inner product $(K_a \cdot K_b)_j = \sum_{i=1}^w K_a[j , i] K_b[j , i]$

• Estimate min-wise: $(a.b)' = \min_j (K_a \cdot K_b)_j$

• Theorem: (similar to before)

\[
(a.b)' \geq a.b \quad \text{and} \quad \Pr[(a.b)' > a.b + \varepsilon|a|_1 |b|_1] \leq \delta
\]

• Space and costs same as for point query
Count-Min: Range Queries

- Range queries: \(a[r,s] = \sum_{r=1}^{s} a_i \)

- Possible approach: estimate \(\sum_{r=1}^{s} a_i \) by \(\sum_{r=1}^{s} a'_i \)

- Problem: errors add linearly with number of terms
Dyadic Partitions on $[1,n]$

- Partition n into **dyadic ranges** in $O(\log n)$ ways

 - $\{\{1\}, \{2\}, \{3\}, \{4\}, \ldots, \{n\}\}$ Partition into singletons
 - $\{\{1,2\}, \{3,4\}, \{5,6\}, \ldots, \{n-1,n\}\}$ Partition into pairs
 - $\{\{1,2,3,4\}, \{5,6,7,8\}, \ldots, \{n-3,n-2,n-1,n\}\}$
 - etc…
 - $\{1,2,3,\ldots,n\}$

Any subinterval $[r,s]$ on $[1,n]$ can be expressed as a disjoint union of at most $2 \log n$ dyadic ranges
Count-Min: Range Queries in [1,n]

• Maintain log n separate Count-Min Sketches
 – One for each dyadic partition
 – Columns of sketch correspond to the dyadic ranges in the partition

• Update accordingly for each arrival \((i(t),c(t))\)
 – For each dyadic partition
 – For each hash \(h\)
 – Add \(c(t)\) to the count for the dyadic interval containing \(h(i(t))\)

• Suppose \([r,s]\) is union of dyadic ranges \(\{D_1, D_2, \ldots, D_k\}\)

• Estimate \(a[r,s]\) by \(a'[r,s] = \sum_{i=1}^{k} a'(D_i)\) where \(a'(D_i)\) is Count-Min estimator for dyadic range \(D_i\)
Count-Min: Range Queries: Bounds

- Exact lower bound $a'[r,s] \geq a[r,s]$
- Probabilistic upper bound
 \[Pr[a'[r,s] \geq a[r,s] + 2\varepsilon \log n |a|_1] \leq \delta \]
- Basic idea:
 - $E[\text{total error}] = \log(n) E[\text{error per interval}]$; use Markov as before
- Note with of upper bound increasing with n

- Space: $O(\log(n)/\varepsilon \log(1/\delta))$
- Update Cost: $O(\log(n) \log(1/\delta))$
- Estimate Cost: $O(\log(n) \log(1/\delta))$
- All increase by factor $\log(n)$: number of sketches
Count-Min Sketch: Quantile Queries

- Consider a_i as weights of distribution over \{1,2,\ldots,n\}

- ϕ-quantile: $j : a_1,\ldots,a_j$ have fraction ϕ of total weight $|a|_1$

 $$\sum_{i=1,..,j} a_i \leq \phi |a|_1 \leq \sum_{i=1,..,j+1} a_i$$

- Example: median, with $\phi = \frac{1}{2}$

- Find approximate quantiles: tolerate error $\epsilon |a|_1$

- Method: binary search on range sums
 - Exploit binary tree structure of dyadic sums
Count-Min Sketch Heavy Hitters

- **ϕ-heavy hitters**: \(i \) that have at least fraction \(\phi \) of total weight:
 \[
a_i \geq \phi |a|_1
 \]

- Find using search on dyadic tree:
 \[
 \{1,2,3,4,5,6,7,8\}
 \]
 \[
 \{1,2,3,4\} \quad \{5,6,7,8\}
 \]
 \[
 \{1,2\} \quad \{3,4\} \quad \{5,6\} \quad \{7,8\}
 \]
 \[
 \{1\} \quad \{2\} \quad \{3\} \quad \{4\} \quad \{5\} \quad \{6\} \quad \{7\} \quad \{8\}
 \]

- If \(a_i \) is a \(\phi \)-heavy hitter; all ancestors \(D \) of \(\{i\} \) have \(a[D] \geq \phi |a|_1 \)
Heavy Hitter Application

- Internet traffic
- Want to find dominant IP addresses
 - Originating or receiving large proportion of total traffic
 - Large website, DDOS victim
- Exploit natural dyadic tree structure of IP addresses based on prefixes
Reference

• Count-Min Sketch, Graham Cormode