Counting distinct items in a stream

• Data stream \(\{a_1, a_2, a_3, \ldots, a_n\} \) of length \(n \)
• Want to find \(m = \) number of distinct values of the \(a_i \)

• Applications
 – Number of distinct items as summary statistics of dataset
 – Useful for computing resource requirements
 – Compare values over different time windows, detect changes
Networking Applications

• Data stream = keys of packet stream
• #distinct items = #distinct keys = #flows
• Detecting distributed Denial of service attacks
 – Increase in number of SrcIP
• Detecting port scanning
 – Increase in number of DstPrt
Counting distinct elements in a stream

- Data stream \{a_1a_2a_3\ldots a_n\} of length n
- How many distinct values: m
- Exact approach:
 - Maintain hash table
 - Each arrival a, store 1 in hash(a)
 - m = #entries in hash table
- Storage cost: \(O(m)\)
- Approximate answer with less storage?
Probabilistic counting of distinct elements

- Data stream \(S = \{a_1, a_2, a_3, \ldots, a_n\} \) of length \(n \)
- Hash \(a \rightarrow h(a) \) uniform in \((0,1]\)
- \(m \) distinct values \(\rightarrow m \) hashes IID uniform in \((0,1]\)
- Maintain minimum value \(H = \min_{a \in S} \{h(a)\} \)
- Streaming
 - Initialize \(H = 1 \)
 - Foreach \(a \); \(H = \min\{H, h(a)\} \)
- Estimate \(m \) by \(m^* = 1/H \)
Probabilistic counting

• By using hash $h(a)$ only distinct elements are relevant
 – Multiple occurrences of same element get hashed to the same value
• If more distinct values \rightarrow Minimum tends to be closer to 0

• Consider $H_m = \min_{i=1,..,m} h_i$
 – Minimum of m IID Unif[0,1] h_i

• CCDF $\Pr[H_m > x] = \Pr[\text{all } h_i > x] = (1-x)^m$

• PDF of H_m is $m(1-x)^{m-1}$: $E[H_m] = 1/(m+1)$

• Using $m^* = 1/H$ is correct in some average sense
Probabilistic counting: bounds

- \(m^* = 1 / H_m \) with \(H_m = \min_{i=1,\ldots,m} h_i \)

- Bound the probability that \(m^* \) is lower than \(m \) by a factor \(k \)

\[
\Pr[m^* / m \leq 1/k] = \Pr[\min_{i=1,\ldots,m} h_i \geq k/m] \\
\leq \Pr[h_i \geq k/m]^m \\
= (1 - k /m)^m \\
\leq \exp(-k) < 1/k
\]
Probabilistic counting: bounds

- $m^* = 1 / H_m$ with $H_m = \min_{i=1,\ldots,m} h_i$

- Bound the probability that m^* is higher than m by a factor k

\[
Pr[m^* / m \geq k] = Pr[\min_{i=1,\ldots,m} h_i \leq 1/(km)] \\
\leq 1 - Pr[\min_{i=1,\ldots,m} h_i > 1/(km)] \\
= 1 - Pr[h_i > 1/(km)]^m \\
= 1 - (1 - 1/(km))^m \\
\leq 1/k
\]

- Summary $Pr[m^* \text{ over or under by factor } k] \leq 2/k$
Discrete Probabilistic Counting in Practice

- Hash function h into $[0, 2^w - 1]$, i.e. w bit binary numbers
- For each a in S, let $z(a) =$ number of leading 0's of $h(a)$
 - $z(a) \geq r$ means $h(a)$ lies in leftmost $1/2^r$ fraction of $[0, 2^w - 1]$
- Define $Z = \max_a z(a)$
- Estimate $m^* = 2^Z$

\[h(a) = 00001... \quad z(a) = 4 \]
Discrete Probabilistic Counting in Practice

• $h(a)$ uniform in $[0, 2^w - 1]$ → bits of $h(a)$ IID with $Pr[1] = Pr[0] = 1/2$

• $Pr[z(a) \geq r] = Pr[\text{first } r \text{ bits are 0}] = 2^{-r}$

• Let $x_a(r)$ be the indicator of the event $\{z(a) \geq r\}$:

 $$x_a(r) = 1 \text{ if } z(a) \geq r, \ 0 \text{ otherwise}$$

• Will need:

 $$E[x_a(r)] = Pr[z(a) \geq r] = 2^{-r} \text{ and } Var(x_a(r)) = 2^{-r} (1 - 2^{-r})$$

• Define $X(r) = \sum_{\text{distinct } a} x_a(r)$:

 #distinct elements that lie in leftmost $1/2^r$ of $[0, 2^w - 1]$
Discrete Probabilistic Counting: Lower Bound

- \(E[x_a(r)] = \Pr[z(a) \geq r] = 2^{-r} \) and \(\text{Var}(x_a(r)) = 2^{-r}(1-2^{-r}) \)
- \(X(r) = \sum_{a \text{ distinct}} x_a(r) \):
 - \#distinct elements in leftmost \(1/2^r \) of \([0,2^w-1]\)
- Recall estimate \(m^* = 2^{\max z(a)} \) for \(z(a) = \# \text{ leading 0's in } h(a) \)
- For \(c > 1 \), \(m^* > c \) \(m \) if \(2^{z(a)} > cm \) for some \(a \), i.e.,

 \[
 \text{if } X(r) \geq 1 \text{ for some } r \text{ such that } 2^r > c \) \(m \)
 \[
 \Pr[X(r) \geq 1] \leq E[X(r)] \quad \text{(Markov)}
 \]
 \[
 = \sum_{a \text{ distinct}} E[x_a(r)]
 \]
 \[
 = m / 2^r
 \]
 \[
 < 1/c
 \]
- Conclusion: \(\Pr[m^* > c \) \(m] < 1/c \)
Discrete Probabilistic Counting: Upper Bound

- \(E[x_a(r)] = \Pr[z(a) \geq r] = 2^{-r} \) and \(\text{Var}(x_a(r)) = 2^{-r} (1-2^{-r}) \)
- \(E[X(r)] = m E[x_a(r)] = m 2^{-r}; \Var[X(r)] = m \text{Var}[x_a(r)] \leq m 2^{-r} = E[X(r)] \)

For \(c > 1, m^* < m/c \) if \(2z(a) < m/c \) for all \(a \), i.e.,

\[
\Pr[X(r) = 0] = \Pr[|X(r) - E[X(r)]| \geq E[X(r)]] \\
\leq \frac{\text{Var}(X(r))}{E[X(r)]^2} \text{(Chebychev)} \\
\leq \frac{1}{E[X(r)]} \\
= \frac{2^r}{m} < \frac{1}{c}
\]

- Conclusion: \(\Pr[m^* < m / c] < 1/c \)
Better estimates through combination

- Single m^* is quite noisy
 - m^* is always a power of 2
 - Markov inequality is quite weak in general

- Improvement
 - Combine multiple m^* computed in parallel with different hash functions

- Use median?
 - Median of s estimates $\{m^*_{1}, m^*_{2}, \ldots, m^*_{s}\}$ is still a power of 2

- Use mean?
 - m^* does not have good averaging properties
 - Probability to double m^* from some $2^{z(a)}$ is $\frac{1}{2}$
 - Get contributions to $E[m^*]$ out to w
 - If we had unlimited bits then $E[m^*]$ would be infinite

- Best of both worlds
 - Compute median of multiple averages
 - Averages are not restricted to powers of two, median omits large values
References