Best Paper Award from ACM MobiHoc 2017

Dr. I-Hong Hou and Dr. P.R. Kumar, part of our CESG faculty, contributed to the Best Paper Award from the Eighteenth International Conference on Mobile Ad Hoc Networking and Computing (ACM MobiHoc 2017) earlier this year. The paper was selected as the best paper out of 179 submissions – which is truly a feat to be recognized!

Title:   “Throughput-Optimal Scheduling for Multi-Hop Networked Transportation Systems With Switch-Over Delay”

Abstract:   The emerging connected-vehicle technology provides a new dimension for developing more intelligent traffic control algorithms for signalized intersections. An important challenge for scheduling in networked transportation systems is the switchover delay caused by the guard time before any traffic signal change. The switch-over delay can result in significant loss of system capacity and hence needs to be accommodated in the scheduling design. To tackle this challenge, we propose a distributed online scheduling policy that extends the well-known Max-Pressure policy to address switch-over delay by introducing a bias factor favoring the current schedule. We prove that the proposed policy is throughput-optimal with switch-over delay. Furthermore, the proposed policy remains optimal when there are both connected signalized intersections and conventional fixed-time ones in the system. With connected-vehicle technology, the proposed policy can be easily incorporated into the current transportation systems without additional infrastructure. Through extensive simulation in VISSIM, we show that our policy indeed outperforms the existing popular policies.

Full list of authors:   I-Hong Hou, Ping-Chun Hsieh, Jian Jiao, P. R. Kumar, Xi Liu, and Yunlong Zhang

Congratulations to all!

Tao Zhao – Best Student Paper Award

Mr. Tao Zhao, a PhD Student in the Department of Electrical and Computer Engineering at Texas A&M University, and his advisor Dr. I-Hong Hou are proud to announce that Tao Zhao has won the Best Student Paper award of the 15th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt 2017) in Paris, France. Zhao co-wrote the paper “A Non-Monetary Mechanism for Optimal Rate Control Through Efficient Delay Allocation” with Dr. I-Hong Hou and Dr. Korok Ray.

Their paper proposes a practical non-monetary mechanism that induces the efficient solution to the optimal rate control problem, where each client optimizes its request arrival rate to maximize its own net utility individually, and at the Nash Equilibrium the total net utility of the system is also maximized. Existing mechanisms typically rely on monetary exchange which requires additional infrastructure that is not always available. Instead, the proposed protocol is based on efficient delay allocation, where the server controls the delay experienced by each client through an intelligent scheduling policy. Specifically, they present an efficient delay allocation rule for the server to determine the target delay of each client. Then they propose a simple scheduling policy to achieve such delay allocation. Furthermore, they design a distributed rate control protocol for the system to converge to the Nash Equilibrium. The optimality of their mechanism is validated via extensive simulations on two representative systems against a baseline mechanism with FIFO scheduling and centralized rate control.

Congratulations Tao Zhao!

Texas A&M Hosts 2017 Texas Systems Day

(On March 31, 2017), top researchers from across the state of Texas studying systems, controls and robotics visited Texas A&M University to participate in the fourth annual Texas Systems Day.

The one-day symposium was established in 2014 at Texas A&M to promote the interaction between researchers in Texas and the exchange of the next generation of ideas.

“This year we’ve had 168 registered attendees, which is a significant increase from last year,” said Dr. Raktim Bhattacharya, associate professor in the Department of Aerospace Engineering and chair of the event’s organizational committee. “This has been a great opportunity for students to interact with other researchers and get an exposure to high-quality work.”

Dr. Jonathan How, the Richard Cockburn Maclaurin Professor of Aeronautics and Astronautics at the Massachusetts Institute of Technology, kicked off the conference with his plenary presentation. Fifteen back-to-back presentations were delivered by faculty members and researchers from institutions, such as the University of North Texas, Texas Tech University, The University of Texas at Arlington, The University of Texas at Austin, Rice University, The University of Texas at Dallas and the University of Houston.

More than 50 participants presented their research in the poster session that covered topics such as cybersecurity, aerial networks, autonomous cars, innovative aerial vehicles robotics, biomedical system identification, control and optimization of smart grids, chemical plants and turbulent flows and novel estimation for space surveillance.

“The diversity of the topics highlights the importance of systems and controls in the modern engineering systems,” said Bhattacharya.

The Texas Systems Day’s steering committee includes Dr. P.R.Kumar, Distinguished Professor and chair of the computer engineering group in the Department of Electrical and Computer Engineering; Dr. Mark Spong, dean of the Erik Jonsson School of Engineering & Computer Science at UT Dallas; and Dr. Ari Arapostathis, professor and Texas Atomic Energy Research Foundation Centennial Fellow in Electrical Engineering at UT Austin..

UT Dallas and UT Arlington hosted the one-day conference in 2015 and 2016, respectively.

Article Written By: Shraddha Sankhe

Satchidanadnan wins best student paper award at COMSNETS 2017

Bharadwaj Satchidanadnan, a graduate student in the Department of Electrical and Computer Engineering at Texas A&M University, won the best student paper award in the 9th International Conference on Communication Systems and Networks (COMSNETS 2017) in Bangalore, India.
Satchidanadnan co-wrote the paper “On Minimal Tests of Sensor Veracity for Dynamic Watermarking-Based Defense of Cyber-Physical Systems,” with his Ph.D. adviser, Dr. P.R. Kumar from the Computer Engineering and Systems Group.

Their paper addresses the problem of secure control of networked cyber-physical systems. More specifically, they consider the problem of controlling a physical plant with multiple inputs and multiple outputs, where the sensors measuring some of the outputs may be malicious. The malicious sensors can collude and report false measurements, fabricated possibly strategically, in order to achieve any objective that they may have, such as destabilizing the closed-loop system or increasing its running cost. In his paper, Satchidanadnan proposes a general technique termed Dynamic Watermarking, which allows the controller to detect such malicious sensors in the system and prevent them from causing performance degradation.

Satchidanandan earned his master’s degree from the Indian Institute of Technology, Madras, India, where he worked on wireless communications. Between May 2015 and August 2015, he interned at Intel Labs in Santa Clara, California, where he worked on interference cancellation algorithms for next generation wireless networks. His research interests include cyberphysical systems, power systems, security, database privacy, communications, control and signal processing.