• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • News
  • Seminars
    • CESG Seminars
    • Fishbowl Seminar Series
    • Computer Engineering Eminent Scholar Seminar Series
    • Topics In Systems Seminar
    • Related Seminars
  • People
    • Faculty
    • Staff
    • Current Visitors
    • Students
  • Research
  • Academics
    • Graduate
    • Undergraduate
  • All Courses
  • Contact
  • Information
    • Information
    • Technology Resources
    • Directions

Computer Engineering and Systems Group

Texas A&M University College of Engineering

CESG Seminar: Dileep Kalathil

Posted on October 27, 2022 by Vickie Winston

Friday, October 28, 2022
10:20 – 11:10 a.m. (CST)
Virtual via Zoom: https://tamu.zoom.us/j/93347193479 (password in emails or syllabus)

Dr.  Dileep Kalathil
Assistant Professor in the Dept. of Electrical and Computer Engineering
Texas A&M University

Title: “Reinforcement Learning with Robustness and Safety Guarantees”

Talking Points
*How do we develop reinforcement learning algorithms that can overcome the simulation-to-reality gap?
*How do we develop reinforcement learning algorithms that maintain safety constraints during learning?

Abstract
Reinforcement Learning (RL) is the class of machine learning that addresses the problem of learning to control unknown dynamical systems. RL has achieved remarkable success recently in applications like playing games and robotics. However, most of these successes are limited to very structured or simulated environments. When applied to real-world systems, RL algorithms face two fundamental sources of fragility. First, the real-world system parameters can be very different from that of the nominal values used for training RL algorithms. Second, the control policy for any real-world system is required to maintain some necessary safety criteria to avoid undesirable outcomes. Most deep RL algorithms overlook these fundamental challenges which often results in learned policies that perform poorly in the real-world settings. In this talk, I will present two approaches to overcome these challenges. First, I will present an RL algorithm that is robust against the parameter mismatches between the simulation system and the real-world system. Second, I will discuss a safe RL algorithm to learn policies such that the frequency of visiting undesirable states and expensive actions satisfies the safety constraints. I will also briefly discuss some practical challenges due to the sparse reward feedback and the need for rapid real-time adaptation in real-world systems, and the approaches to overcome these challenges.
Robust RL papers: R-P1, R-P2, R-P3
Safe RL papers: S-P1, S-P2, S-P3, S-P4

Biography 
Dr. Dileep Kalathil  is an Assistant Professor in the Department of Electrical and Computer Engineering here at Texas A&M University (TAMU). His main research area is reinforcement learning theory and algorithms, and their applications in communication networks and power systems. Before joining TAMU, he was a postdoctoral researcher in the EECS department at UC Berkeley. He received his Ph.D. from University of Southern California (USC) in 2014, where he won the best Ph.D. Dissertation Prize in the Department of Electrical Engineering. He received his M. Tech. from IIT Madras, where he won the award for the best academic performance in the Electrical Engineering Department. He received the NSF CRII Award in 2019 and the NSF CAREER award in 2021. He is a senior member of IEEE.

More information on Dr. Kalathil can be found HERE.

More info. on past and future CESG Seminars at CESG Seminars (tamu.edu)

* Friday, 10/28/22 at 10:20 a.m. via Zoom *

Filed Under: Uncategorized

Recent NEWS

  • CESG Seminar: Peipei Zhou March 1, 2023
  • CESG Seminar – Desik Rengarajan February 21, 2023
  • CESG Seminar – Manoranjan Majji February 13, 2023
  • CESG Seminar – Jiang Hu February 2, 2023
  • CESG Seminar – Sabit Ekin January 24, 2023
  • Congratulations Dr. Hu! January 13, 2023
  • Congratulations Fall 2022 Graduates! December 12, 2022

© 2016–2023 Computer Engineering and Systems Group Log in

Texas A&M Engineering Experiment Station Logo
  • State of Texas
  • Open Records
  • Risk, Fraud & Misconduct Hotline
  • Statewide Search
  • Site Links & Policies
  • Accommodations
  • Environmental Health, Safety & Security
  • Employment